You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/paddle_analysis_config.h

167 lines
5.9 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cassert>
#include <memory>
#include <string>
#include <unordered_set>
#include <vector>
// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h" // NOLINT
#include "paddle_pass_builder.h" // NOLINT
namespace paddle {
class AnalysisPredictor;
// ==
//
// -----------------------------------------------------------------------------------
// NOTE: The following APIs are not mature yet, we are still working on them.
namespace contrib {
// NOTE WIP, not stable yet.
struct AnalysisConfig {
AnalysisConfig() = default;
explicit AnalysisConfig(const AnalysisConfig& other);
explicit AnalysisConfig(const std::string& model_dir);
explicit AnalysisConfig(const std::string& prog_file,
const std::string& params_file);
// Model path related.
void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
void SetModel(const std::string& prog_file_path,
const std::string& params_file_path);
void SetProgFile(const std::string& x) { prog_file_ = x; }
void SetParamsFile(const std::string& x) { params_file_ = x; }
const std::string& model_dir() const { return model_dir_; }
const std::string& prog_file() const { return prog_file_; }
const std::string& params_file() const { return params_file_; }
// GPU related.
void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
void DisableGpu();
bool use_gpu() const { return use_gpu_; }
int gpu_device_id() const { return device_id_; }
int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
float fraction_of_gpu_memory_for_pool() const;
// Determine whether to perform graph optimization.
void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
bool ir_optim() const { return enable_ir_optim_; }
void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
bool specify_input_name() const { return specify_input_name_; }
void EnableTensorRtEngine(int workspace_size = 1 << 20,
int max_batch_size = 1, int min_subgraph_size = 3);
bool tensorrt_engine_enabled() const { return use_tensorrt_; }
void SwitchIrDebug(int x = true) { ir_debug_ = x; }
void EnableMKLDNN();
bool mkldnn_enabled() const { return use_mkldnn_; }
// Set and get the number of cpu math library threads.
void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
int cpu_math_library_num_threads() const {
return cpu_math_library_num_threads_;
}
NativeConfig ToNativeConfig() const {
NativeConfig config;
config.model_dir = model_dir_;
config.prog_file = prog_file_;
config.param_file = params_file_;
config.use_gpu = use_gpu_;
config.device = device_id_;
config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
config.specify_input_name = specify_input_name_;
return config;
}
void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
mkldnn_enabled_op_types_ = op_list;
}
// Specify the memory buffer of program and parameter
void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
const char* program_buffer, size_t program_buffer_size);
bool model_from_memory() const { return model_from_memory_; }
friend class ::paddle::AnalysisPredictor;
// NOTE just for developer, not an official API, easily to be broken.
// Get a pass builder for customize the passes in IR analysis phase.
PassStrategy* pass_builder() const;
protected:
// Update the config.
void Update();
std::string SerializeInfoCache();
protected:
// Model pathes.
std::string model_dir_;
std::string prog_file_;
std::string params_file_;
// GPU releated.
bool use_gpu_{false};
int device_id_{0};
uint64_t memory_pool_init_size_mb_{100}; // initial size is 100MB.
// TensorRT releated.
bool use_tensorrt_{false};
// For workspace_size, refer it from here:
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
int tensorrt_workspace_size_;
// While TensorRT allows an engine optimized for a given max batch size
// to run at any smaller size, the performance for those smaller
// sizes may not be as well-optimized. Therefore, Max batch is best
// equivalent to the runtime batch size.
int tensorrt_max_batchsize_;
// We transform the Ops that can be converted into TRT layer in the model,
// and aggregate these Ops into subgraphs for TRT execution.
// We set this variable to control the minimum number of nodes in the
// subgraph, 3 as default value.
int tensorrt_min_subgraph_size_{3};
bool use_mkldnn_{false};
std::unordered_set<std::string> mkldnn_enabled_op_types_;
bool model_from_memory_{false};
bool enable_ir_optim_{true};
bool use_feed_fetch_ops_{true};
bool ir_debug_{false};
bool specify_input_name_{false};
int cpu_math_library_num_threads_{1};
// A runtime cache, shouldn't be transferred to others.
std::string serialized_info_cache_;
mutable std::unique_ptr<PassStrategy> pass_builder_;
};
} // namespace contrib
} // namespace paddle