You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/set_value_op.h

275 lines
9.8 KiB

// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/assign_value_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/fluid/operators/utils.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
inline std::string GetValueName(framework::proto::VarType::Type data_type) {
std::string value_name;
switch (data_type) {
case framework::proto::VarType::INT32:
value_name = "int32_values";
break;
case framework::proto::VarType::INT64:
value_name = "int64_values";
break;
case framework::proto::VarType::FP32:
value_name = "fp32_values";
break;
case framework::proto::VarType::FP64:
value_name = "fp64_values";
break;
case framework::proto::VarType::BOOL:
value_name = "bool_values";
break;
default:
PADDLE_THROW(platform::errors::Unimplemented(
"Unsupported data type(code %d) for SetValue operator, only "
"supports bool, int32, float32 and int64.",
data_type));
}
return value_name;
}
inline void CheckAndUpdateSlice(const framework::DDim in_dims,
const std::vector<int64_t> axes,
std::vector<int64_t>* starts,
std::vector<int64_t>* ends,
std::vector<int64_t>* steps) {
for (size_t i = 0; i < axes.size(); ++i) {
int64_t axis = axes[i];
int64_t dim_value = in_dims[axis];
int64_t start =
(*starts)[i] < 0 ? ((*starts)[i] + dim_value) : (*starts)[i];
int64_t end = (*ends)[i] < 0 ? ((*ends)[i] + dim_value) : (*ends)[i];
start = std::max(start, static_cast<int64_t>(0));
end = std::min(end, dim_value);
int64_t step = (*steps)[i];
PADDLE_ENFORCE_NE(
step, 0, platform::errors::InvalidArgument(
"Step should not be 0, but received step = %d.", step));
if (step > 0) {
start = std::min(start, dim_value);
end = std::max(end, static_cast<int64_t>(0));
PADDLE_ENFORCE_GT(
end, start,
platform::errors::InvalidArgument(
"When step > 0, end should be greater than start, but "
"received end = %d, start = %d.",
end, start));
} else {
// NOTE(liym27): When step < 0, start should less and equal to dim_value-1
// "end is -1" means contain the 0-th element of this axis.
start = std::min(start, dim_value - 1);
end = std::max(end, static_cast<int64_t>(-1));
PADDLE_ENFORCE_GT(
start, end,
platform::errors::InvalidArgument(
"When step < 0, start should be greater than end, but "
"received start = %d, end = %d.",
start, end));
}
(*starts)[i] = start;
(*ends)[i] = end;
}
}
inline framework::DDim GetSliceDims(const framework::DDim in_dims,
const std::vector<int64_t> axes,
const std::vector<int64_t> starts,
const std::vector<int64_t> ends,
const std::vector<int64_t> steps) {
framework::DDim slice_dims(in_dims);
for (size_t i = 0; i < axes.size(); ++i) {
int64_t axis = axes[i];
int64_t start = starts[i];
int64_t end = ends[i];
int64_t step = steps[i];
if (step > 0) {
slice_dims[axis] = (end - start + step - 1) / step;
} else {
slice_dims[axis] = (end - start + step + 1) / step;
}
}
return slice_dims;
}
template <typename DeviceContext, typename T>
class SetValueKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const {
const int rank = ctx.Input<framework::LoDTensor>("Input")->dims().size();
// TODO(liym27): A more elegent code to do this. C++ has to make template
// integer as constant, but we had better have alternative writing in the
// future.
switch (rank) {
case 1:
SetValueCompute<1>(ctx);
break;
case 2:
SetValueCompute<2>(ctx);
break;
case 3:
SetValueCompute<3>(ctx);
break;
case 4:
SetValueCompute<4>(ctx);
break;
case 5:
SetValueCompute<5>(ctx);
break;
case 6:
SetValueCompute<6>(ctx);
break;
default:
PADDLE_THROW(platform::errors::InvalidArgument(
"The rank of input should be less than 7, but received %d.", rank));
}
}
private:
template <size_t D>
void SetValueCompute(const framework::ExecutionContext& ctx) const {
auto* in = ctx.Input<framework::LoDTensor>("Input");
auto* value_tensor = ctx.Input<framework::LoDTensor>("ValueTensor");
auto* out = ctx.Output<framework::LoDTensor>("Out");
auto starts_tensor_list =
ctx.MultiInput<framework::Tensor>("StartsTensorList");
auto ends_tensor_list = ctx.MultiInput<framework::Tensor>("EndsTensorList");
auto steps_tensor_list =
ctx.MultiInput<framework::Tensor>("StepsTensorList");
auto axes = ctx.Attr<std::vector<int64_t>>("axes");
auto starts = ctx.Attr<std::vector<int64_t>>("starts");
auto ends = ctx.Attr<std::vector<int64_t>>("ends");
auto steps = ctx.Attr<std::vector<int64_t>>("steps");
auto shape = ctx.Attr<std::vector<int64_t>>("shape");
auto dtype = in->type();
if (!starts_tensor_list.empty()) {
starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
}
if (!ends_tensor_list.empty()) {
ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
}
if (!steps_tensor_list.empty()) {
steps = GetDataFromTensorList<int64_t>(steps_tensor_list);
}
auto in_dims = in->dims();
CheckAndUpdateSlice(in_dims, axes, &starts, &ends, &steps);
auto slice_dims = GetSliceDims(in_dims, axes, starts, ends, steps);
auto place = ctx.GetPlace();
auto& eigen_place =
*ctx.template device_context<DeviceContext>().eigen_device();
// Here copy data from input to avoid data loss at PE and Graph level.
// TODO(liym27): Speed up in the future version.
// - Q: Why don't call ShareDataWith to speed up?
// - A: Because it's not supported to ShareDataWith on OP's input and output
// https://github.com/PaddlePaddle/Paddle/wiki/ShareDataWith-and-ShareBufferWith-are-prohibited-in-OP
// - Q: Why don't delete Input, after all, the input and output are the same
// Tensor at program level?
// - A: If deleting Input, the graph will be complex, such as there will
// be two ops points to the output in graph: op1 -> output <- set_value.
// In this case, we have to find a way to handle the running order of
// set_value is what we want.
TensorCopy(*in, place, out);
Tensor slice_t(dtype), pad_t(dtype);
slice_t.mutable_data<T>(slice_dims, place);
pad_t.mutable_data<T>(in_dims, place);
auto pad_e = framework::EigenTensor<T, D>::From(pad_t, in_dims);
auto out_e = framework::EigenTensor<T, D>::From(*out);
auto slice_e = framework::EigenTensor<T, D>::From(slice_t, slice_dims);
// Step 1: Set the value of out at `_index` to zero
slice_e.device(eigen_place) = slice_e.constant(T(0));
auto starts_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
auto ends_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
auto strides_indices = Eigen::DSizes<Eigen::DenseIndex, D>();
for (size_t i = 0; i < D; ++i) {
starts_indices[i] = 0;
ends_indices[i] = slice_dims[i];
strides_indices[i] = 1;
}
for (size_t i = 0; i < axes.size(); i++) {
int axis_index = axes[i];
starts_indices[axis_index] = starts[i];
ends_indices[axis_index] = ends[i];
strides_indices[axis_index] = steps[i];
}
out_e.stridedSlice(starts_indices, ends_indices, strides_indices)
.device(eigen_place) = slice_e;
// Step 2: Set a tensor with the same shape as out tensor. And its data at
// '_index' is the same as value_tensor, and data out of '_index' to zero
// - Step 2.1 Set slice tensor with value
if (value_tensor != nullptr) {
// ElementwiseComputeEx can do broadcasting
ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
ctx, &slice_t, value_tensor, -1, SubFunctor<T>(), &slice_t);
} else {
Tensor value_t(dtype);
auto value_dims = framework::make_ddim(shape);
value_t.mutable_data<T>(value_dims, place);
auto value_name = GetValueName(dtype);
CopyVecotorToTensor<T>(value_name.c_str(), &value_t, ctx);
value_t.Resize(value_dims);
ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
ctx, &slice_t, &value_t, -1, SubFunctor<T>(), &slice_t);
}
// - Step 2.2 Pad slice tensor with 0
pad_e.device(eigen_place) = pad_e.constant(T(0));
pad_e.stridedSlice(starts_indices, ends_indices, strides_indices)
.device(eigen_place) = slice_e;
// Step 3: Set out tensor with value_tensor
out_e.device(eigen_place) = out_e - pad_e;
}
};
} // namespace operators
} // namespace paddle