You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
62 lines
2.3 KiB
62 lines
2.3 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle
|
|
from numpy.random import random as rand
|
|
from paddle import complex as cpx
|
|
from paddle import tensor
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.dygraph as dg
|
|
|
|
|
|
class TestComplexSumLayer(unittest.TestCase):
|
|
def setUp(self):
|
|
self._dtypes = ["float32", "float64"]
|
|
self._places = [paddle.CPUPlace()]
|
|
if fluid.core.is_compiled_with_cuda():
|
|
self._places.append(paddle.CUDAPlace(0))
|
|
|
|
def test_complex_x(self):
|
|
for dtype in self._dtypes:
|
|
input = rand([2, 10, 10]).astype(dtype) + 1j * rand(
|
|
[2, 10, 10]).astype(dtype)
|
|
for place in self._places:
|
|
with dg.guard(place):
|
|
var_x = dg.to_variable(input)
|
|
result = cpx.sum(var_x, dim=[1, 2]).numpy()
|
|
target = np.sum(input, axis=(1, 2))
|
|
self.assertTrue(np.allclose(result, target))
|
|
|
|
def test_complex_basic_api(self):
|
|
for dtype in self._dtypes:
|
|
input = rand([2, 10, 10]).astype(dtype) + 1j * rand(
|
|
[2, 10, 10]).astype(dtype)
|
|
for place in self._places:
|
|
with dg.guard(place):
|
|
var_x = paddle.Tensor(
|
|
value=input,
|
|
place=place,
|
|
persistable=False,
|
|
zero_copy=None,
|
|
stop_gradient=True)
|
|
result = tensor.sum(var_x, axis=[1, 2]).numpy()
|
|
target = np.sum(input, axis=(1, 2))
|
|
self.assertTrue(np.allclose(result, target))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|