You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
371 lines
15 KiB
371 lines
15 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/layer_norm_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
using DataLayout = framework::DataLayout;
|
|
|
|
template <typename T>
|
|
using EigenMatrixMapRowMajor = Eigen::Map<
|
|
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;
|
|
template <typename T>
|
|
using ConstEigenMatrixMapRowMajor = Eigen::Map<
|
|
const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;
|
|
|
|
class LayerNormOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of LayerNormOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Y"),
|
|
"Output(Y) of LayerNormOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Mean"),
|
|
"Output(Mean) of LayerNormOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Variance"),
|
|
"Output(Variance) of LayerNormOp should not be null.");
|
|
|
|
auto x_dim = ctx->GetInputDim("X");
|
|
auto begin_norm_axis = ctx->Attrs().Get<int>("begin_norm_axis");
|
|
PADDLE_ENFORCE_LT(begin_norm_axis, x_dim.size(),
|
|
"'begin_norm_axis' must be less than the rank of X.");
|
|
|
|
auto matrix_dim = framework::flatten_to_2d(x_dim, begin_norm_axis);
|
|
int left = static_cast<int>(matrix_dim[0]);
|
|
int right = static_cast<int>(matrix_dim[1]);
|
|
if (ctx->HasInput("Scale")) {
|
|
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
|
|
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], right);
|
|
}
|
|
if (ctx->HasInput("Bias")) {
|
|
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
|
|
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], right);
|
|
}
|
|
|
|
ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
|
|
ctx->SetOutputDim("Mean", {left});
|
|
ctx->SetOutputDim("Variance", {left});
|
|
ctx->ShareLoD("X", "Y");
|
|
}
|
|
};
|
|
|
|
class LayerNormOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
LayerNormOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "(LoDTensor) The input tensor.");
|
|
AddInput("Scale",
|
|
"(Tensor, optional) Scale is a 1-dimensional tensor of size "
|
|
"H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
|
|
"It is applied to the output.")
|
|
.AsDispensable();
|
|
AddInput("Bias",
|
|
"(Tensor, optional) Bias is a 1-dimensional tensor of size "
|
|
"H(`begin_norm_axis` splits the tensor(`X`) to a matrix [N,H])."
|
|
"It is applied to the output.")
|
|
.AsDispensable();
|
|
AddOutput("Y", "(LoDTensor) Result after normalization.");
|
|
AddOutput("Mean", "(Tensor) Mean of the current mini batch.")
|
|
.AsIntermediate();
|
|
AddOutput("Variance", "(Tensor) Variance of the current mini batch.")
|
|
.AsIntermediate();
|
|
|
|
AddAttr<float>("epsilon",
|
|
"(float, default 1e-5) Constant for "
|
|
"numerical stability")
|
|
.SetDefault(1e-5)
|
|
.AddCustomChecker([](const float &epsilon) {
|
|
PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f,
|
|
"'epsilon' should be between 0.0 and 0.001.");
|
|
});
|
|
AddAttr<int>("begin_norm_axis",
|
|
"(int default:1), the "
|
|
"axis of `begin_norm_axis ... Rank(X) - 1` will be "
|
|
"normalized. `begin_norm_axis` splits the tensor(`X`) to a "
|
|
"matrix [N,H].")
|
|
.SetDefault(1)
|
|
.AddCustomChecker([](const int &begin_norm_axis) {
|
|
PADDLE_ENFORCE_GT(begin_norm_axis, 0,
|
|
"'begin_norm_axis' should be greater than zero.");
|
|
});
|
|
|
|
AddComment(R"DOC(
|
|
Layer Normalization.
|
|
|
|
Layer Norm has been implemented as discussed in the paper:
|
|
https://arxiv.org/abs/1607.06450
|
|
...
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class LayerNormKernel<platform::CPUDeviceContext, T>
|
|
: public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
const float epsilon = ctx.Attr<float>("epsilon");
|
|
const auto *scale = ctx.Input<Tensor>("Scale");
|
|
const auto *bias = ctx.Input<Tensor>("Bias");
|
|
const auto *x = ctx.Input<Tensor>("X");
|
|
const auto &x_dims = x->dims();
|
|
const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
|
|
|
|
auto *output = ctx.Output<Tensor>("Y");
|
|
auto *mean = ctx.Output<Tensor>("Mean");
|
|
auto *var = ctx.Output<Tensor>("Variance");
|
|
output->mutable_data<T>(ctx.GetPlace());
|
|
mean->mutable_data<T>(ctx.GetPlace());
|
|
var->mutable_data<T>(ctx.GetPlace());
|
|
|
|
auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
|
|
int left = static_cast<int>(matrix_dim[0]);
|
|
int right = static_cast<int>(matrix_dim[1]);
|
|
|
|
auto input_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
|
|
|
|
auto mean_map = EigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
|
|
auto var_map = EigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);
|
|
auto output_map = EigenMatrixMapRowMajor<T>(output->data<T>(), left, right);
|
|
|
|
auto squre = [](T ele) { return ele * ele; };
|
|
auto add_epslion = [epsilon](T ele) { return ele + epsilon; };
|
|
|
|
mean_map = input_map.rowwise().mean();
|
|
var_map = (input_map - mean_map.replicate(1, right))
|
|
.unaryExpr(squre)
|
|
.rowwise()
|
|
.mean()
|
|
.unaryExpr(add_epslion);
|
|
|
|
auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };
|
|
// TODO(zcd): Some thinking about output_map, is it appropriate that
|
|
// `output_map` and `input_map` point to the same memory.
|
|
auto inv_std = var_map.unaryExpr(inv_std_func);
|
|
if (scale && bias) {
|
|
auto scale_map =
|
|
ConstEigenMatrixMapRowMajor<T>(scale->data<T>(), 1, right);
|
|
auto bias_map = ConstEigenMatrixMapRowMajor<T>(bias->data<T>(), 1, right);
|
|
output_map = (input_map - mean_map.replicate(1, right))
|
|
.cwiseProduct(inv_std.replicate(1, right))
|
|
.cwiseProduct(scale_map.replicate(left, 1)) +
|
|
bias_map.replicate(left, 1);
|
|
} else if (scale) {
|
|
auto scale_map =
|
|
ConstEigenMatrixMapRowMajor<T>(scale->data<T>(), 1, right);
|
|
output_map = (input_map - mean_map.replicate(1, right))
|
|
.cwiseProduct(inv_std.replicate(1, right))
|
|
.cwiseProduct(scale_map.replicate(left, 1));
|
|
} else if (bias) {
|
|
auto bias_map = ConstEigenMatrixMapRowMajor<T>(bias->data<T>(), 1, right);
|
|
output_map = (input_map - mean_map.replicate(1, right))
|
|
.cwiseProduct(inv_std.replicate(1, right)) +
|
|
bias_map.replicate(left, 1);
|
|
} else {
|
|
output_map = (input_map - mean_map.replicate(1, right))
|
|
.cwiseProduct(inv_std.replicate(1, right));
|
|
}
|
|
}
|
|
};
|
|
|
|
class LayerNormGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
// check input
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of LayerNormOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Scale"),
|
|
"Input(Scale) of LayerNormOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Mean"),
|
|
"Input(Mean) of LayerNormOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Variance"),
|
|
"Input(Variance) of LayerNormOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
|
|
"Input(Y@GRAD) of LayerNormOp should not be null.");
|
|
|
|
// check output
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("Scale"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Scale"),
|
|
ctx->GetInputDim("Scale"));
|
|
}
|
|
if (ctx->HasOutput(framework::GradVarName("Bias"))) {
|
|
ctx->SetOutputDim(framework::GradVarName("Bias"),
|
|
ctx->GetInputDim("Bias"));
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
const auto *var = ctx.InputVar(framework::GradVarName("Y"));
|
|
if (var == nullptr) {
|
|
PADDLE_THROW("can't find Y@GRAD");
|
|
}
|
|
const Tensor *t = nullptr;
|
|
if (var->IsType<Tensor>()) {
|
|
t = &var->Get<Tensor>();
|
|
} else if (var->IsType<LoDTensor>()) {
|
|
t = &var->Get<LoDTensor>();
|
|
}
|
|
if (t == nullptr) {
|
|
PADDLE_THROW("can't find Y@GRAD");
|
|
}
|
|
return framework::OpKernelType(framework::ToDataType(t->type()),
|
|
ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class LayerNormGradKernel<platform::CPUDeviceContext, T>
|
|
: public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
const auto *x = ctx.Input<Tensor>("X");
|
|
const auto *mean = ctx.Input<Tensor>("Mean");
|
|
const auto *var = ctx.Input<Tensor>("Variance");
|
|
const auto *scale = ctx.Input<Tensor>("Scale");
|
|
const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
|
|
|
|
const auto &x_dims = x->dims();
|
|
|
|
const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
|
|
auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
|
|
int left = static_cast<int>(matrix_dim[0]);
|
|
int right = static_cast<int>(matrix_dim[1]);
|
|
|
|
// init output
|
|
auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
|
|
auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
|
|
|
|
auto x_map = ConstEigenMatrixMapRowMajor<T>(x->data<T>(), left, right);
|
|
auto d_y_map = ConstEigenMatrixMapRowMajor<T>(d_y->data<T>(), left, right);
|
|
auto mean_map = ConstEigenMatrixMapRowMajor<T>(mean->data<T>(), left, 1);
|
|
auto var_map = ConstEigenMatrixMapRowMajor<T>(var->data<T>(), left, 1);
|
|
|
|
if (d_bias) {
|
|
d_bias->mutable_data<T>(ctx.GetPlace());
|
|
auto d_bias_map = EigenMatrixMapRowMajor<T>(d_bias->data<T>(), 1, right);
|
|
d_bias_map = d_y_map.colwise().sum();
|
|
}
|
|
if (d_scale) {
|
|
d_scale->mutable_data<T>(ctx.GetPlace());
|
|
auto d_scale_map =
|
|
EigenMatrixMapRowMajor<T>(d_scale->data<T>(), 1, right);
|
|
auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };
|
|
// There are two equation to compute d_scale. One uses "Y" and the other
|
|
// does not use "Y"
|
|
d_scale_map =
|
|
((x_map - mean_map.replicate(1, right))
|
|
.cwiseProduct(
|
|
var_map.unaryExpr(inv_std_func).replicate(1, right))
|
|
.cwiseProduct(d_y_map))
|
|
.colwise()
|
|
.sum();
|
|
}
|
|
|
|
if (d_x) {
|
|
d_x->mutable_data<T>(ctx.GetPlace());
|
|
auto d_x_map = EigenMatrixMapRowMajor<T>(d_x->data<T>(), left, right);
|
|
auto triple_product_func = [](T ele) { return ele * ele * ele; };
|
|
auto inv_std_func = [](T ele) { return std::sqrt(1 / ele); };
|
|
// TODO(zcd): these code can be refined
|
|
if (d_scale) {
|
|
auto scale_map =
|
|
ConstEigenMatrixMapRowMajor<T>(scale->data<T>(), 1, right);
|
|
// dy_dx
|
|
auto dx_end = var_map.unaryExpr(inv_std_func)
|
|
.replicate(1, right)
|
|
.cwiseProduct(d_y_map)
|
|
.cwiseProduct(scale_map.replicate(left, 1));
|
|
// dy_dmean_dx
|
|
auto dx_mean = (T(-1.0) / right) *
|
|
var_map.unaryExpr(inv_std_func)
|
|
.replicate(1, right)
|
|
.cwiseProduct(d_y_map)
|
|
.cwiseProduct(scale_map.replicate(left, 1))
|
|
.rowwise()
|
|
.sum()
|
|
.replicate(1, right);
|
|
// dy_var_dx
|
|
auto dvar_end_part = (x_map - mean_map.replicate(1, right))
|
|
.cwiseProduct(scale_map.replicate(left, 1))
|
|
.cwiseProduct(d_y_map)
|
|
.rowwise()
|
|
.sum();
|
|
auto dvar_end = var_map.unaryExpr(inv_std_func)
|
|
.unaryExpr(triple_product_func)
|
|
.cwiseProduct(dvar_end_part)
|
|
.replicate(1, right);
|
|
auto dx_var =
|
|
(T(-1.0) / right) *
|
|
(x_map - mean_map.replicate(1, right)).cwiseProduct(dvar_end);
|
|
|
|
d_x_map = dx_end + dx_mean + dx_var;
|
|
} else {
|
|
// dy_dx
|
|
auto dx_end = var_map.unaryExpr(inv_std_func)
|
|
.replicate(1, right)
|
|
.cwiseProduct(d_y_map);
|
|
// dy_dmean_dx
|
|
auto dx_mean = (T(-1.0) / right) *
|
|
var_map.unaryExpr(inv_std_func)
|
|
.replicate(1, right)
|
|
.cwiseProduct(d_y_map)
|
|
.rowwise()
|
|
.sum()
|
|
.replicate(1, right);
|
|
// dy_var_dx
|
|
auto dvar_end_part = (x_map - mean_map.replicate(1, right))
|
|
.cwiseProduct(d_y_map)
|
|
.rowwise()
|
|
.sum();
|
|
auto dvar_end = var_map.unaryExpr(inv_std_func)
|
|
.unaryExpr(triple_product_func)
|
|
.cwiseProduct(dvar_end_part)
|
|
.replicate(1, right);
|
|
auto dx_var =
|
|
(T(-1.0) / right) *
|
|
(x_map - mean_map.replicate(1, right)).cwiseProduct(dvar_end);
|
|
|
|
d_x_map = dx_end + dx_mean + dx_var;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP(layer_norm, ops::LayerNormOp, ops::LayerNormOpMaker,
|
|
layer_norm_grad, ops::LayerNormGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
layer_norm,
|
|
ops::LayerNormKernel<paddle::platform::CPUDeviceContext, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
layer_norm_grad,
|
|
ops::LayerNormGradKernel<paddle::platform::CPUDeviceContext, float>);
|