You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/heterxpu_trainer.cc

571 lines
21 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cstdlib>
#include <ctime>
#include <string>
#include <vector>
#include "io/fs.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
#include "paddle/fluid/framework/trainer.h"
#if (defined PADDLE_WITH_CUDA || defined PADDLE_WITH_XPU) && \
(defined PADDLE_WITH_PSLIB)
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
namespace paddle {
namespace framework {
void HeterXpuTrainer::Initialize(const TrainerDesc& trainer_desc,
Dataset* dataset) {
srand((unsigned)time(NULL));
param_ = trainer_desc.downpour_param();
for (int i = 0; i < param_.dense_table_size(); ++i) {
uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
auto table = param_.dense_table(i);
dense_grad_names_[table_id].resize(table.dense_grad_name_size());
for (int j = 0; j < table.dense_grad_name_size(); ++j) {
dense_grad_names_[table_id][j] = table.dense_grad_name(j);
}
}
scale_datanorm_ = trainer_desc.scale_datanorm();
int place_num = trainer_desc.worker_places_size();
for (int i = 0; i < place_num; ++i) {
int num = trainer_desc.worker_places(i);
#ifdef PADDLE_WITH_CUDA
platform::CUDAPlace place = platform::CUDAPlace(num);
platform::CUDADeviceGuard guard(place.device);
cudaStream_t stream;
PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream));
copy_streams_.push_back(stream);
places_.push_back(place);
cudaEvent_t event;
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
events_.push_back(event);
#endif
#ifdef PADDLE_WITH_XPU
platform::XPUPlace place = platform::XPUPlace(num);
places_.push_back(place);
#endif
}
// thread_num_ = trainer_desc.thread_num();
// SetDataset(dataset);
// dump_fields_path_ = trainer_desc.dump_fields_path();
// dump_converter_ = trainer_desc.dump_converter();
// need_dump_field_ = false;
// if (trainer_desc.dump_fields_size() != 0 && dump_fields_path_ != "") {
// need_dump_field_ = true;
// }
// if (need_dump_field_) {
// auto &file_list = dataset->GetFileList();
// if (file_list.size() == 0) {
// need_dump_field_ = false;
// }
// }
// mpi_rank_ = trainer_desc.mpi_rank();
// mpi_size_ = trainer_desc.mpi_size();
// dump_file_num_ = trainer_desc.dump_file_num();
// const std::vector<paddle::framework::DataFeed *> readers =
// dataset->GetReaders();
// thread_num_ = readers.size();
for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
i++) {
need_merge_var_names_.push_back(
trainer_desc.downpour_param().stat_var_names(i));
}
running_ = true;
VLOG(3) << "going to initialize pull dense worker";
pull_dense_worker_ = PullDenseWorker::GetInstance();
pull_dense_worker_->Initialize(trainer_desc);
VLOG(3) << "initialize pull dense worker";
SetDebug(trainer_desc.debug());
fleet_ptr_ = FleetWrapper::GetInstance();
heter_ptr_ = HeterWrapper::GetInstance();
RegisterServiceHandler();
// for (int i = 0; i < trainer_desc.worker_places_size(); ++i) {
// int num = trainer_desc.worker_places(i);
// platform::CUDAPlace place = platform::CUDAPlace(num);
// platform::CUDADeviceGuard guard(place.device);
// cudaStream_t stream;
// PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamCreate(&stream));
// copy_streams_.push_back(stream);
// places_.push_back(place);
// }
trainer_desc_ = trainer_desc;
}
void HeterXpuTrainer::CreateThreadParam(const ProgramDesc& program, int num) {
auto place = places_[num];
Scope* scope = place_scopes_[num];
#ifdef PADDLE_WITH_CUDA
auto stream = copy_streams_[num];
auto event = events_[num];
auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
platform::CUDADeviceGuard guard(dev_id);
#endif
#ifdef PADDLE_WITH_XPU
xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device);
#endif
auto& block = program.Block(0);
for (auto& var : block.AllVars()) {
if (var->Persistable()) {
auto name = var->Name();
Variable* root_var = root_scope_->FindVar(name);
LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
auto* ptr = scope->Var(name);
InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
#define HeterMemcpyFunc(cpp_type, proto_type) \
do { \
if (root_tensor->type() == proto_type) { \
HeterMemCpy<cpp_type>(thread_tensor, root_tensor, place, stream); \
} \
} while (0)
#define HeterMemcpyXpuFunc(cpp_type, proto_type) \
do { \
if (root_tensor->type() == proto_type) { \
HeterMemCpy<cpp_type>(thread_tensor, root_tensor, place); \
} \
} while (0)
#ifdef PADDLE_WITH_CUDA
_ForEachDataType_(HeterMemcpyFunc);
#endif
#ifdef PADDLE_WITH_XPU
_ForEachDataType_(HeterMemcpyXpuFunc);
#endif
}
}
#ifdef PADDLE_WITH_CUDA
PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventRecord(event, stream));
cudaEventSynchronize(event);
#endif
}
#ifdef PADDLE_WITH_CUDA
template <typename T>
void HeterXpuTrainer::HeterMemCpy(LoDTensor* thread_tensor,
LoDTensor* root_tensor,
const paddle::platform::Place& thread_place,
cudaStream_t stream) {
T* thread_ptr =
thread_tensor->mutable_data<T>(root_tensor->dims(), thread_place);
T* root_ptr = root_tensor->data<T>();
if (platform::is_cpu_place(root_tensor->place())) {
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
platform::CPUPlace(), root_ptr,
sizeof(T) * root_tensor->numel(), stream);
} else {
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, thread_place), thread_ptr,
BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()),
root_ptr, sizeof(T) * root_tensor->numel(), stream);
}
}
#endif
#ifdef PADDLE_WITH_XPU
template <typename T>
void HeterXpuTrainer::HeterMemCpy(LoDTensor* thread_tensor,
LoDTensor* root_tensor,
const paddle::platform::Place& thread_place) {
T* thread_ptr =
thread_tensor->mutable_data<T>(root_tensor->dims(), thread_place);
T* root_ptr = root_tensor->data<T>();
if (platform::is_cpu_place(root_tensor->place())) {
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, thread_place), thread_ptr,
platform::CPUPlace(), root_ptr,
sizeof(T) * root_tensor->numel());
} else {
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, thread_place), thread_ptr,
BOOST_GET_CONST(platform::XPUPlace, root_tensor->place()),
root_ptr, sizeof(T) * root_tensor->numel());
}
}
#endif
void HeterXpuTrainer::DumpWork(int tid) {}
void HeterXpuTrainer::InitTrainerEnv(const ProgramDesc& main_program,
const platform::Place& place) {
CacheProgram(main_program);
place_ = place;
auto& profiler = paddle::ps::CostProfiler::instance();
profiler.register_profiler("xpu_service_run_task");
profiler.register_profiler("xpu_service_deserial");
profiler.register_profiler("xpu_service_launch_kernel");
profiler.register_profiler("xpu_service_wait");
}
void HeterXpuTrainer::InitOtherEnv(const ProgramDesc& main_program) {
auto& block = main_program.Block(0);
pull_dense_worker_->SetRootScope(root_scope_);
pull_dense_worker_->CreatePinVar();
for (size_t i = 0; i < places_.size(); ++i) {
Scope* scope = &(root_scope_->NewScope());
// for (auto &var : block.AllVars()) {
// if (var->Persistable()) {
// auto *ptr = scope->Var(var->Name());
// InitializeVariable(ptr, var->GetType());
// }
// }
place_scopes_.push_back(scope);
CreateThreadParam(main_program, i);
pull_dense_worker_->AddThreadScope(scope);
pull_dense_worker_->AddPlace(places_[i]);
#ifdef PADDLE_WITH_CUDA
pull_dense_worker_->AddStream(copy_streams_[i]);
#endif
}
pull_dense_worker_->Start();
#ifdef PADDLE_WITH_CUDA
for (auto& stream : copy_streams_) {
cudaStreamSynchronize(stream);
}
#endif
op_names_.clear();
for (auto& op_desc : block.AllOps()) {
std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
op_names_.push_back(op_desc->Type());
OperatorBase* local_op_ptr = local_op.release();
ops_.push_back(local_op_ptr);
continue;
}
xpu_begin_op_index_ = xpu_end_op_index_ = -1;
xpu_begin_op_index_ = trainer_desc_.xpu_start_idx();
xpu_end_op_index_ = trainer_desc_.xpu_end_idx();
VLOG(0) << "xpu begin: " << xpu_begin_op_index_
<< " xpu end: " << xpu_end_op_index_;
// CHECK(xpu_begin_op_index_ == 0);
// CHECK(xpu_end_op_index_ = ops_.size() - 1);
//// init pool
for (size_t i = 0; i < 6; ++i) {
for (size_t j = 0; j < places_.size(); ++j) {
int num = j;
std::shared_ptr<HeterServiceContext> context =
std::make_shared<HeterServiceContext>();
context->place_num_ = num;
auto place = places_[num];
context->scope_ = &(place_scopes_[num]->NewScope());
auto& block = program_.Block(0);
for (auto& var : block.AllVars()) {
if (!var->Persistable()) {
auto* ptr = context->scope_->Var(var->Name());
InitializeVariable(ptr, var->GetType());
}
}
for (auto& v : dense_grad_names_) {
for (auto& name : v.second) {
auto* ptr = context->scope_->Var(name + "pin");
InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
}
}
for (auto& op_desc : block.AllOps()) {
std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
OperatorBase* local_op_ptr = local_op.release();
(context->ops_).push_back(local_op_ptr);
}
#ifdef PADDLE_WITH_CUDA
auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
platform::CUDADeviceGuard guard(dev_id);
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventCreateWithFlags(&context->event_, cudaEventDisableTiming));
#endif
object_pool_.Push(context);
}
}
VLOG(3) << "init other env done.";
}
void HeterXpuTrainer::Run() {}
int HeterXpuTrainer::EndPass(const HeterRequest* request,
HeterResponse* response) {
// int scope_num = object_pool_.Size();
for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
if (root_var == nullptr) {
continue;
}
LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
for (size_t j = 0; j < place_scopes_.size(); j++) {
Scope* cur_thread_scope = place_scopes_[j];
Variable* thread_var =
cur_thread_scope->FindVar(need_merge_var_names_[i]);
if (thread_var == nullptr) {
continue;
}
LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
// if (root_tensor->numel() != thread_tensor->numel()) {
// continue;
// }
#define MergeCallback(cpp_type, proto_type) \
do { \
if (root_tensor->type() == proto_type) { \
if (thread_tensor->type() != proto_type) { \
VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
<< "] " << need_merge_var_names_[i] \
<< ", root tensor type=" << root_tensor->type() \
<< ", thread tensor type=" << thread_tensor->type(); \
exit(-1); \
} \
MergeToRootScope<cpp_type>(root_tensor, thread_tensor); \
} \
} while (0)
_ForEachDataType_(MergeCallback);
if (!platform::is_cpu_place(thread_tensor->place())) {
#ifdef PADDLE_WITH_CUDA
auto dev_id =
BOOST_GET_CONST(platform::CUDAPlace, thread_tensor->place()).device;
platform::CUDADeviceGuard guard(dev_id);
cudaMemset(thread_tensor->data<void>(), 0,
thread_tensor->numel() * SizeOfType(thread_tensor->type()));
#endif
#ifdef PADDLE_WITH_XPU
auto place = thread_tensor->place();
xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device);
platform::DeviceContextPool& pool =
platform::DeviceContextPool::Instance();
platform::DeviceContext* dev_ctx = pool.Get(place);
const platform::XPUDeviceContext* xpu_ctx =
reinterpret_cast<const platform::XPUDeviceContext*>(dev_ctx);
xpu::memset(xpu_ctx->x_context(), thread_tensor->data<void>(), 0,
thread_tensor->numel() * SizeOfType(thread_tensor->type()));
#endif
} else {
memset(thread_tensor->data<void>(), 0,
thread_tensor->numel() * SizeOfType(thread_tensor->type()));
}
}
auto* merge_var = response->add_vars();
heter_ptr_->SerializeToReq(need_merge_var_names_[i], root_scope_,
merge_var);
if (!platform::is_cpu_place(root_tensor->place())) {
#ifdef PADDLE_WITH_CUDA
auto dev_id =
BOOST_GET_CONST(platform::CUDAPlace, root_tensor->place()).device;
platform::CUDADeviceGuard guard(dev_id);
cudaMemset(root_tensor->data<void>(), 0,
root_tensor->numel() * SizeOfType(root_tensor->type()));
#endif
#ifdef PADDLE_WITH_XPU
auto place = root_tensor->place();
xpu_set_device(BOOST_GET_CONST(platform::XPUPlace, place).device);
platform::DeviceContextPool& pool =
platform::DeviceContextPool::Instance();
platform::DeviceContext* dev_ctx = pool.Get(place);
const platform::XPUDeviceContext* xpu_ctx =
reinterpret_cast<const platform::XPUDeviceContext*>(dev_ctx);
xpu::memset(xpu_ctx->x_context(), root_tensor->data<void>(), 0,
root_tensor->numel() * SizeOfType(root_tensor->type()));
#endif
} else {
memset(root_tensor->data<void>(), 0,
root_tensor->numel() * SizeOfType(root_tensor->type()));
}
}
return 0;
}
template <typename T>
void HeterXpuTrainer::MergeToRootScope(LoDTensor* root_tensor,
LoDTensor* tensor) {
LoDTensor tmp_root;
TensorCopy(*root_tensor, platform::CPUPlace(), &tmp_root);
T* tmp_root_data = tmp_root.data<T>();
LoDTensor tmp_tensor;
TensorCopy(*tensor, platform::CPUPlace(), &tmp_tensor);
T* data = tmp_tensor.data<T>();
for (int i = 0; i < tmp_tensor.numel(); i++) {
tmp_root_data[i] += data[i];
}
TensorCopy(tmp_root, root_tensor->place(), root_tensor);
}
int HeterXpuTrainer::StopService(const HeterRequest* request,
HeterResponse* response) {
std::unique_lock<std::mutex> lock(mutex_);
running_ = false;
cond_.notify_one();
return 0;
}
int HeterXpuTrainer::RunTask(const HeterRequest* request,
HeterResponse* response) {
auto timer = std::make_shared<paddle::ps::CostTimer>("xpu_service_run_task");
std::shared_ptr<HeterServiceContext> context = object_pool_.Get();
if (!context->scope_) {
int num = rand() % places_.size();
context->place_num_ = num;
auto place = places_[num];
context->scope_ = &(place_scopes_[num]->NewScope());
auto& block = program_.Block(0);
for (auto& var : block.AllVars()) {
if (!var->Persistable()) {
auto* ptr = context->scope_->Var(var->Name());
InitializeVariable(ptr, var->GetType());
}
}
for (auto& v : dense_grad_names_) {
for (auto& name : v.second) {
auto* ptr = context->scope_->Var(name + "pin");
InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
}
}
for (auto& op_desc : block.AllOps()) {
std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
OperatorBase* local_op_ptr = local_op.release();
(context->ops_).push_back(local_op_ptr);
}
#ifdef PADDLE_WITH_CUDA
auto dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
platform::CUDADeviceGuard guard(dev_id);
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventCreateWithFlags(&context->event_, cudaEventDisableTiming));
#endif
}
context->Reset();
auto place = places_[context->place_num_];
{
auto deserial_timer =
std::make_shared<paddle::ps::CostTimer>("xpu_service_deserial");
for (int i = 0; i < request->vars_size(); ++i) {
#ifdef PADDLE_WITH_CUDA
heter_ptr_->DeSerializeToTensor(context->scope_, request->vars(i), place,
copy_streams_[context->place_num_]);
#endif
#ifdef PADDLE_WITH_XPU
heter_ptr_->DeSerializeToTensor(context->scope_, request->vars(i), place);
#endif
}
#ifdef PADDLE_WITH_CUDA
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventRecord(context->event_, copy_streams_[context->place_num_]));
while (cudaEventQuery(context->event_) != cudaSuccess) {
VLOG(3) << "wait for kernel";
bthread_yield();
}
#endif
}
{
auto launch_timer =
std::make_shared<paddle::ps::CostTimer>("xpu_service_launch_kernel");
for (int i = xpu_begin_op_index_; i <= xpu_end_op_index_; ++i) {
auto& op = (context->ops_)[i];
op->Run(*(context->scope_), place);
}
}
#ifdef PADDLE_WITH_CUDA
auto* dev_ctx = static_cast<platform::CUDADeviceContext*>(
platform::DeviceContextPool::Instance().Get(place));
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventRecord(context->event_, dev_ctx->stream()));
// cudaEventSynchronize(context->event_);
{
auto wait_timer =
std::make_shared<paddle::ps::CostTimer>("xpu_service_wait");
while (cudaEventQuery(context->event_) != cudaSuccess) {
VLOG(3) << "wait for kernel";
bthread_yield();
}
}
#endif
#ifdef PADDLE_WITH_XPU
xpu_wait();
#endif
for (int i = 0; i < trainer_desc_.xpu_send_list_size(); ++i) {
const std::string& varname = trainer_desc_.xpu_send_list(i);
// CHECK(varname == "concat_1.tmp_0@GRAD");
auto* res_var = response->add_vars();
heter_ptr_->SerializeToReq(varname, context->scope_, res_var);
}
// std::string varname = "concat_1.tmp_0@GRAD";
//
// auto* res_var = response->add_vars();
// heter_ptr_->SerializeToReq(varname, context->scope_, res_var);
for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
++i) {
uint64_t tid =
static_cast<uint64_t>(param_.program_config(0).push_dense_table_id(i));
#ifdef PADDLE_WITH_CUDA
fleet_ptr_->PushDenseVarsAsync(
*(context->scope_), tid, dense_grad_names_[tid],
&(context->push_dense_status_), scale_datanorm_, request->cur_batch(),
places_[context->place_num_], copy_streams_[context->place_num_],
context->event_);
#endif
#ifdef PADDLE_WITH_XPU
fleet_ptr_->PushDenseVarsAsync(
*(context->scope_), tid, dense_grad_names_[tid],
&(context->push_dense_status_), scale_datanorm_, request->cur_batch(),
places_[context->place_num_]);
#endif
}
for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
++i) {
uint64_t tid =
static_cast<uint64_t>(param_.program_config(0).push_dense_table_id(i));
pull_dense_worker_->IncreaseThreadVersion(0, tid);
}
VLOG(3) << "push dense gradient done.";
context->scope_->DropKids();
object_pool_.Push(context);
VLOG(0) << "pool size " << object_pool_.Size();
return 0;
}
void HeterXpuTrainer::RegisterServiceHandler() {
heter_ptr_->RegisterServiceHandler(
0, [this](const HeterRequest* request, HeterResponse* response) -> int {
return this->RunTask(request, response);
});
heter_ptr_->RegisterServiceHandler(
1, [this](const HeterRequest* request, HeterResponse* response) -> int {
return this->EndPass(request, response);
});
heter_ptr_->RegisterServiceHandler(
2, [this](const HeterRequest* request, HeterResponse* response) -> int {
return this->StopService(request, response);
});
}
Scope* HeterXpuTrainer::GetWorkerScope(int thread_id) { return nullptr; }
void HeterXpuTrainer::Finalize() {
// for (auto &th : threads_) {
// th.join();
// }
std::unique_lock<std::mutex> lock(mutex_);
cond_.wait(lock, [this] { return !running_; });
sleep(3);
pull_dense_worker_->Stop();
root_scope_->DropKids();
}
} // namespace framework
} // namespace paddle
#endif