216 lines
7.3 KiB
216 lines
7.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import contextlib
|
|
import unittest
|
|
import numpy as np
|
|
import sys
|
|
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import core
|
|
from paddle.fluid.imperative.nn import FC
|
|
from test_imperative_base import new_program_scope
|
|
|
|
|
|
class MyLayer(fluid.imperative.Layer):
|
|
def __init__(self):
|
|
super(MyLayer, self).__init__()
|
|
|
|
def forward(self, inputs):
|
|
x = fluid.layers.relu(inputs)
|
|
self._x_for_debug = x
|
|
x = fluid.layers.elementwise_mul(x, x)
|
|
x = fluid.layers.reduce_sum(x)
|
|
return [x]
|
|
|
|
|
|
class MyPyLayer(fluid.imperative.PyLayer):
|
|
def __init__(self):
|
|
super(MyPyLayer, self).__init__()
|
|
|
|
@staticmethod
|
|
def forward(inputs):
|
|
sys.stderr.write('before forward\n')
|
|
ret = np.tanh(inputs[0])
|
|
sys.stderr.write('after forward: %s\n' % ret)
|
|
tensor = core.LoDTensor()
|
|
tensor.set(ret, core.CPUPlace())
|
|
return tuple([tensor])
|
|
|
|
@staticmethod
|
|
def backward(inputs):
|
|
sys.stderr.write('calling into backward: %s\n' % str(inputs))
|
|
inp, out, dout = inputs
|
|
inp = np.array(inp)
|
|
out = np.array(out)
|
|
dout = np.array(dout)
|
|
sys.stderr.write('calling into backward: %s, %s, %s\n' %
|
|
(inp, out, dout))
|
|
ret = np.array(dout) * (1 - np.square(np.array(out)))
|
|
tensor = core.LoDTensor()
|
|
tensor.set(ret, core.CPUPlace())
|
|
return tuple([tensor])
|
|
|
|
|
|
class MLP(fluid.imperative.Layer):
|
|
def __init__(self):
|
|
super(MLP, self).__init__()
|
|
self._fc1 = FC(3,
|
|
fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.1)))
|
|
self._fc2 = FC(4,
|
|
fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.1)))
|
|
|
|
def forward(self, inputs):
|
|
x = self._fc1(inputs)
|
|
x = self._fc2(x)
|
|
x = fluid.layers.reduce_sum(x)
|
|
return x
|
|
|
|
|
|
class TestImperative(unittest.TestCase):
|
|
def test_layer(self):
|
|
with fluid.imperative.guard():
|
|
cl = core.Layer()
|
|
cl.forward([])
|
|
l = fluid.imperative.Layer()
|
|
self.assertRaises(NotImplementedError, l.forward, [])
|
|
|
|
def test_pylayer_func_id(self):
|
|
|
|
with fluid.imperative.guard():
|
|
|
|
class PyLayer1(fluid.imperative.PyLayer):
|
|
def __init__(self):
|
|
super(PyLayer1, self).__init__()
|
|
|
|
@staticmethod
|
|
def forward(input):
|
|
return input
|
|
|
|
@staticmethod
|
|
def backward(input):
|
|
return input
|
|
|
|
class PyLayer2(fluid.imperative.PyLayer):
|
|
def __init__(self):
|
|
super(PyLayer2, self).__init__()
|
|
|
|
@staticmethod
|
|
def forward(input):
|
|
return input
|
|
|
|
@staticmethod
|
|
def backward(input):
|
|
return input
|
|
|
|
py_layer_1 = PyLayer1()
|
|
py_layer_2 = PyLayer2()
|
|
py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
|
|
py_layer_2(fluid.imperative.base.to_variable(np.ones([2, 2])))
|
|
id = py_layer_1.forward_id
|
|
self.assertGreater(id, 0)
|
|
self.assertEqual(py_layer_1.backward_id, id + 1)
|
|
self.assertEqual(py_layer_2.forward_id, id + 2)
|
|
self.assertEqual(py_layer_2.backward_id, id + 3)
|
|
py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
|
|
self.assertEqual(py_layer_1.forward_id, id)
|
|
|
|
def test_pylayer(self):
|
|
np_inp = np.ones([2, 2], np.float32)
|
|
with fluid.imperative.guard():
|
|
my_py_layer = MyPyLayer()
|
|
var_inp = fluid.imperative.base.to_variable(np_inp)
|
|
outs = my_py_layer(var_inp)
|
|
dy_out = np.sum(outs[0]._numpy())
|
|
outs[0]._backward()
|
|
dy_grad = var_inp._gradient()
|
|
|
|
with new_program_scope():
|
|
inp = fluid.layers.data(
|
|
name="inp", shape=[2, 2], append_batch_size=False)
|
|
# TODO(panyx0718): Paddle doesn't diff against data `inp`.
|
|
x1 = inp * 1
|
|
# TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
|
|
x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
|
|
param_grads = fluid.backward.append_backward(
|
|
x, parameter_list=[x1.name])[0]
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
|
|
static_out, static_grad = exe.run(
|
|
feed={inp.name: np_inp},
|
|
fetch_list=[x.name, param_grads[1].name])
|
|
|
|
self.assertTrue(np.allclose(dy_out, static_out))
|
|
self.assertTrue(np.allclose(dy_grad, static_grad))
|
|
|
|
def test_layer_in_out(self):
|
|
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
|
|
with fluid.imperative.guard():
|
|
var_inp = fluid.imperative.base.to_variable(np_inp)
|
|
l = MyLayer()
|
|
x = l(var_inp)[0]
|
|
self.assertIsNotNone(x)
|
|
dy_out = x._numpy()
|
|
x._backward()
|
|
dy_grad = l._x_for_debug._gradient()
|
|
|
|
with new_program_scope():
|
|
inp = fluid.layers.data(
|
|
name="inp", shape=[3], append_batch_size=False)
|
|
l = MyLayer()
|
|
x = l(inp)[0]
|
|
param_grads = fluid.backward.append_backward(
|
|
x, parameter_list=[l._x_for_debug.name])[0]
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
|
|
static_out, static_grad = exe.run(
|
|
feed={inp.name: np_inp},
|
|
fetch_list=[x.name, param_grads[1].name])
|
|
|
|
self.assertTrue(np.allclose(dy_out, static_out))
|
|
self.assertTrue(np.allclose(dy_grad, static_grad))
|
|
|
|
def test_mlp(self):
|
|
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
|
|
with fluid.imperative.guard():
|
|
var_inp = fluid.imperative.base.to_variable(np_inp)
|
|
mlp = MLP()
|
|
out = mlp(var_inp)
|
|
dy_out = out._numpy()
|
|
out._backward()
|
|
dy_grad = mlp._fc1._w._gradient()
|
|
|
|
with new_program_scope():
|
|
inp = fluid.layers.data(
|
|
name="inp", shape=[2, 2], append_batch_size=False)
|
|
mlp = MLP()
|
|
out = mlp(inp)
|
|
param_grads = fluid.backward.append_backward(
|
|
out, parameter_list=[mlp._fc1._w.name])[0]
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
static_out, static_grad = exe.run(
|
|
feed={inp.name: np_inp},
|
|
fetch_list=[out.name, param_grads[1].name])
|
|
|
|
self.assertTrue(np.allclose(dy_out, static_out))
|
|
self.assertTrue(np.allclose(dy_grad, static_grad))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|