You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_inplace_addto_strategy.py

122 lines
3.8 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.backward import calc_gradient
import numpy as np
class ConvBNLayer(fluid.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
data_format="NCHW"):
super(ConvBNLayer, self).__init__()
self._conv = paddle.nn.Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
bias_attr=False,
data_format=data_format)
self._batch_norm = paddle.nn.BatchNorm(
num_filters, data_layout=data_format)
def forward(self, inputs):
y = self._conv(inputs)
y = self._batch_norm(y)
return y
def create_program(data_format="NCHW"):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
x = fluid.data(name='img', shape=[-1, 3, 224, 224])
x.stop_gradient = False
if data_format == "NHWC":
x = paddle.transpose(x, [0, 2, 3, 1])
x = fluid.layers.prelu(x, mode="channel")
conv = ConvBNLayer(
num_channels=3,
num_filters=3,
filter_size=1,
data_format=data_format)
y = conv(x) + x
loss = fluid.layers.reduce_sum(y)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)
return loss, main, startup, conv._conv.weight
class TestInplaceAddto(unittest.TestCase):
def check_result(self, data_format="NCHW"):
def run_program(enable_addto):
np.random.seed(10)
paddle.seed(10)
paddle.framework.random._manual_program_seed(10)
if fluid.core.is_compiled_with_cuda():
fluid.set_flags({"FLAGS_cudnn_deterministic": True})
fluid.set_flags({"FLAGS_max_inplace_grad_add": 2})
loss, main, startup, w = create_program(data_format=data_format)
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.CPUPlace()
exe = fluid.Executor(place)
strategy = fluid.BuildStrategy()
strategy.enable_addto = enable_addto
compiled = fluid.CompiledProgram(main).with_data_parallel(
loss_name=loss.name, build_strategy=strategy)
exe.run(startup)
img = np.random.uniform(-128, 128,
[8, 3, 224, 224]).astype(np.float32)
for i in range(10):
res = exe.run(compiled,
feed={'img': img},
fetch_list=[loss.name, w.name])
return res
res1, w1 = run_program(True)
res2, w2 = run_program(False)
self.assertTrue(np.array_equal(res1, res2))
def test_nchw(self):
self.check_result()
def test_nhwc(self):
self.check_result("NHWC")
if __name__ == "__main__":
paddle.enable_static()
unittest.main()