You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
198 lines
7.8 KiB
198 lines
7.8 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
#include <algorithm>
|
|
#include "paddle/framework/executor.h"
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class ConditionalOp : public framework::OperatorBase {
|
|
public:
|
|
ConditionalOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
protected:
|
|
std::vector<const framework::LoDTensor *> InputTensors(
|
|
const framework::Scope &scope) const {
|
|
std::vector<const framework::LoDTensor *> retv;
|
|
auto xs = Inputs("X");
|
|
retv.resize(xs.size(), nullptr);
|
|
std::transform(
|
|
xs.begin(), xs.end(), retv.begin(),
|
|
[&scope](const std::string &var_name) -> const framework::LoDTensor * {
|
|
auto *var = scope.FindVar(var_name);
|
|
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", var_name);
|
|
return &var->Get<framework::LoDTensor>();
|
|
});
|
|
return retv;
|
|
}
|
|
};
|
|
|
|
class ConditionalBlockOp : public ConditionalOp {
|
|
public:
|
|
ConditionalBlockOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: ConditionalOp(type, inputs, outputs, attrs) {}
|
|
void Run(const framework::Scope &scope,
|
|
const platform::DeviceContext &dev_ctx) const override {
|
|
auto xs = InputTensors(scope);
|
|
bool need_run = std::all_of(
|
|
xs.begin(), xs.end(),
|
|
[](const framework::LoDTensor *t) { return t->numel() != 0; });
|
|
|
|
if (need_run) {
|
|
auto *scope_var = scope.FindVar(Output("Scope"));
|
|
PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
|
|
auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
|
|
scopes->resize(1);
|
|
scopes->front() = &scope.NewScope();
|
|
auto &cur_scope = *scopes->front();
|
|
|
|
auto *block = Attr<framework::BlockDesc *>("sub_block");
|
|
framework::Executor exec(dev_ctx);
|
|
exec.Run(*block->Program(), &cur_scope, block->ID(), false);
|
|
}
|
|
}
|
|
};
|
|
|
|
class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
ConditionalBlockOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"The conditional variable of this operator. If X is empty, the "
|
|
"whole sub-block will not be executed.")
|
|
.AsDuplicable();
|
|
AddInput("Params", "The input variables of the sub-block.").AsDuplicable();
|
|
AddOutput("Out", "The output variables of the sub-block.").AsDuplicable();
|
|
AddOutput("Scope",
|
|
"(std::vector<Scope*>) The step scope of conditional block. To "
|
|
"unify the conditional block, rnn and while op, the type of "
|
|
"scope is std::vector<Scope*>");
|
|
AddAttr<framework::BlockDesc *>(
|
|
"sub_block", "The step block of conditional block operator");
|
|
AddComment(R"DOC(Conditional block operator
|
|
|
|
Run the sub-block if X is not empty. Params is the other inputs and Out is the
|
|
outputs of the sub-block.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class ConditionalBlockGradOp : public ConditionalOp {
|
|
public:
|
|
ConditionalBlockGradOp(const std::string &type,
|
|
const framework::VariableNameMap &inputs,
|
|
const framework::VariableNameMap &outputs,
|
|
const framework::AttributeMap &attrs)
|
|
: ConditionalOp(type, inputs, outputs, attrs) {}
|
|
void Run(const framework::Scope &scope,
|
|
const platform::DeviceContext &dev_ctx) const override {
|
|
auto xs = this->InputTensors(scope);
|
|
bool need_run = std::all_of(
|
|
xs.begin(), xs.end(),
|
|
[](const framework::LoDTensor *t) { return t->numel() != 0; });
|
|
|
|
if (need_run) {
|
|
auto *scope_var = scope.FindVar(Input("Scope"));
|
|
PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
|
|
auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
|
|
framework::Scope &cur_scope = *scopes[0];
|
|
|
|
auto *block = Attr<framework::BlockDesc *>("sub_block");
|
|
framework::Executor exec(dev_ctx);
|
|
exec.Run(*block->Program(), &cur_scope, block->ID(), false);
|
|
|
|
AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("Params"),
|
|
Outputs(framework::GradVarName("Params")));
|
|
|
|
AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("X"),
|
|
Outputs(framework::GradVarName("X")));
|
|
}
|
|
}
|
|
|
|
private:
|
|
void AssignLocalGradientToGlobal(
|
|
const platform::DeviceContext &dev_ctx, const framework::Scope &cur_scope,
|
|
const std::vector<std::string> &p_names,
|
|
const std::vector<std::string> &pg_names) const {
|
|
for (size_t i = 0; i < p_names.size(); ++i) {
|
|
auto out_grad_name = pg_names[i];
|
|
auto in_grad_name = framework::GradVarName(p_names[i]);
|
|
auto *in_var = cur_scope.FindVar(in_grad_name);
|
|
if (in_var == nullptr) {
|
|
continue;
|
|
}
|
|
auto new_in_grad_name = cur_scope.Rename(in_grad_name);
|
|
auto assign = framework::OpRegistry::CreateOp(
|
|
"assign", {{"X", {new_in_grad_name}}}, {{"Out", {out_grad_name}}},
|
|
framework::AttributeMap{});
|
|
assign->Run(cur_scope, dev_ctx);
|
|
cur_scope.Rename(new_in_grad_name, in_grad_name);
|
|
}
|
|
}
|
|
};
|
|
|
|
class ConditionalBlockGradInferShape : public framework::InferShapeBase {
|
|
public:
|
|
void operator()(framework::InferShapeContext *context) const override {
|
|
PADDLE_ENFORCE(context->HasInputs("X"));
|
|
if (context->HasInputs("Params")) {
|
|
PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("Params")));
|
|
context->SetOutputsDim(framework::GradVarName("Params"),
|
|
context->GetInputsDim("Params"));
|
|
}
|
|
PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("X")));
|
|
context->SetOutputsDim(framework::GradVarName("X"),
|
|
context->GetInputsDim("X"));
|
|
}
|
|
};
|
|
|
|
class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto grad_op = new framework::OpDesc();
|
|
grad_op->SetType("conditional_block_grad");
|
|
grad_op->SetInput("X", Input("X"));
|
|
grad_op->SetInput("Params", Input("Params"));
|
|
grad_op->SetInput("Out", Output("Out"));
|
|
grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
|
grad_op->SetInput("Scope", Output("Scope"));
|
|
grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X", false));
|
|
grad_op->SetOutput(framework::GradVarName("Params"),
|
|
InputGrad("Params", false));
|
|
grad_op->SetBlockAttr("sub_block", *this->grad_block_[0]);
|
|
return std::unique_ptr<framework::OpDesc>(grad_op);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(conditional_block, ops::ConditionalBlockOp,
|
|
ops::ConditionalBlockOpProtoMaker,
|
|
ops::ConditionalBlockGradMaker);
|
|
REGISTER_OPERATOR(conditional_block_grad, ops::ConditionalBlockGradOp,
|
|
ops::ConditionalBlockGradInferShape);
|