You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
106 lines
3.9 KiB
106 lines
3.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
You may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/operators/math/math_function.h"
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class MulKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
const Tensor* x = context.Input<Tensor>("X");
|
|
const Tensor* y = context.Input<Tensor>("Y");
|
|
Tensor* z = context.Output<Tensor>("Out");
|
|
const Tensor x_matrix =
|
|
x->dims().size() > 2
|
|
? framework::ReshapeToMatrix(
|
|
*x, context.template Attr<int>("x_num_col_dims"))
|
|
: *x;
|
|
const Tensor y_matrix =
|
|
y->dims().size() > 2
|
|
? framework::ReshapeToMatrix(
|
|
*y, context.template Attr<int>("y_num_col_dims"))
|
|
: *y;
|
|
|
|
z->mutable_data<T>(context.GetPlace());
|
|
auto z_dim = z->dims();
|
|
if (z_dim.size() != 2) {
|
|
z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]});
|
|
}
|
|
math::matmul<DeviceContext, T>(
|
|
context.template device_context<DeviceContext>(), x_matrix, false,
|
|
y_matrix, false, 1, z, 0);
|
|
if (z_dim.size() != 2) {
|
|
z->Resize(z_dim);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class MulGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
int x_num_col_dims = ctx.template Attr<int>("x_num_col_dims");
|
|
int y_num_col_dims = ctx.template Attr<int>("y_num_col_dims");
|
|
const Tensor* x = ctx.Input<Tensor>("X");
|
|
const Tensor* y = ctx.Input<Tensor>("Y");
|
|
const Tensor x_matrix = x->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*x, x_num_col_dims)
|
|
: *x;
|
|
const Tensor y_matrix = y->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*y, y_num_col_dims)
|
|
: *y;
|
|
const Tensor* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
Tensor dout_mat;
|
|
dout_mat.ShareDataWith(*dout);
|
|
dout_mat.Resize({framework::flatten_to_2d(x->dims(), x_num_col_dims)[0],
|
|
framework::flatten_to_2d(y->dims(), y_num_col_dims)[1]});
|
|
|
|
Tensor* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
Tensor* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
if (dx) {
|
|
dx->mutable_data<T>(ctx.GetPlace());
|
|
Tensor dx_matrix = dx->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*dx, x_num_col_dims)
|
|
: *dx;
|
|
|
|
// dx = dout * y'. dx: M x K, dout : M x N, y : K x N
|
|
math::matmul<DeviceContext, T>(dev_ctx, dout_mat, false, y_matrix, true,
|
|
1, &dx_matrix, 0);
|
|
}
|
|
if (dy) {
|
|
dy->mutable_data<T>(ctx.GetPlace());
|
|
Tensor dy_matrix = dy->dims().size() > 2
|
|
? framework::ReshapeToMatrix(*dy, y_num_col_dims)
|
|
: *dy;
|
|
// dy = x' * dout. dy K x N, dout : M x N, x : M x K
|
|
math::matmul<DeviceContext, T>(dev_ctx, x_matrix, true, dout_mat, false,
|
|
1, &dy_matrix, 0);
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|