You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
205 lines
8.1 KiB
205 lines
8.1 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/softmax_with_cross_entropy_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SoftmaxWithCrossEntropyOpMaker
|
|
: public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SoftmaxWithCrossEntropyOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("Logits",
|
|
"(Tensor, default: Tensor<float>), The unscaled log probabilities "
|
|
"which is a 2-D tensor with shape [N x K]. N is the batch_size, "
|
|
"and K is the class number.");
|
|
AddInput("Label",
|
|
"(Tensor) The ground truth which is a 2-D tensor. If soft_label "
|
|
"is set to false, Label is a Tensor<int64> with shape [N x 1]. If "
|
|
"soft_label is set to true, Label is a Tensor<float/double> with "
|
|
"shape [N x K].");
|
|
AddOutput(
|
|
"Softmax",
|
|
"(Tensor, default: Tensor<float>), A 2-D tensor with shape [N x K]. "
|
|
"The outputs value of softmax activation by given the input batch, "
|
|
"which will be used in backward calculation.")
|
|
.AsIntermediate();
|
|
AddOutput("Loss",
|
|
"(Tensor, default: Tensor<float>), A 2-D tensor. The cross "
|
|
"entropy loss with shape [N x 1].");
|
|
AddAttr<bool>(
|
|
"soft_label",
|
|
"(bool, default: false), A flag to indicate whether to interpretate "
|
|
"the given labels as soft labels.")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
Softmax With Cross Entropy Operator.
|
|
|
|
Cross entropy loss with softmax is used as the output layer extensively. This
|
|
operator computes the softmax normalized values for each row of the input
|
|
tensor, after which cross-entropy loss is computed. This provides a more
|
|
numerically stable gradient.
|
|
|
|
Because this operator performs a softmax on logits internally, it expects
|
|
unscaled logits. This operator should not be used with the output of
|
|
softmax operator since that would produce incorrect results.
|
|
|
|
When the attribute soft_label is set false, this operators expects mutually
|
|
exclusive hard labels, each sample in a batch is in exactly one class with a
|
|
probability of 1.0. Each sample in the batch will have a single label.
|
|
|
|
The equation is as follows:
|
|
|
|
1) Hard label (one-hot label, so every sample has exactly one class)
|
|
|
|
$$Loss_j = -\text{Logit}_{Label_j} +
|
|
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right),
|
|
j = 1,..., K$$
|
|
|
|
2) Soft label (each sample can have a distribution over all classes)
|
|
|
|
$$Loss_j = -\sum_{i=0}^{K}\text{Label}_i \left(\text{Logit}_i -
|
|
\log\left(\sum_{i=0}^{K}\exp(\text{Logit}_i)\right)\right),
|
|
j = 1,...,K$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SoftmaxWithCrossEntropyOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Logits"),
|
|
"Input(Logits) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Softmax"),
|
|
"Output(Softmax) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Loss"), "Output(Loss) should be not null.");
|
|
|
|
auto logits_dims = ctx->GetInputDim("Logits");
|
|
auto labels_dims = ctx->GetInputDim("Label");
|
|
PADDLE_ENFORCE_EQ(
|
|
logits_dims.size(), 2UL,
|
|
"The input of softmax_with_cross_entropy should be a 2-D tensor.");
|
|
PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
|
|
"The labels should be a 2-D tensor.");
|
|
|
|
if (ctx->Attrs().Get<bool>("soft_label")) {
|
|
PADDLE_ENFORCE_EQ(logits_dims[1], labels_dims[1],
|
|
"If Attr(soft_label) == true, the 2nd dimension of "
|
|
"Input(X) and Input(Label) should be equal.");
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
|
|
"If Attr(soft_label) == false, the 2nd dimension of "
|
|
"Input(Label) should be 1.");
|
|
}
|
|
|
|
ctx->SetOutputDim("Softmax", logits_dims);
|
|
ctx->SetOutputDim("Loss", {logits_dims[0], 1});
|
|
|
|
ctx->ShareLoD("Logits", /*->*/ "Softmax");
|
|
ctx->ShareLoD("Logits", /*->*/ "Loss");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(ctx.Input<Tensor>("Logits")->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class SoftmaxWithCrossEntropyOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
|
|
"Input(Loss@Grad) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Softmax"),
|
|
"Input(Softmax) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")),
|
|
"Output(Logits@Grad) should be not null.");
|
|
|
|
auto softmax_dims = ctx->GetInputDim("Softmax");
|
|
auto labels_dims = ctx->GetInputDim("Label");
|
|
PADDLE_ENFORCE_EQ(labels_dims.size(), 2UL,
|
|
"The labels should be a 2-D tensor.");
|
|
|
|
if (ctx->Attrs().Get<bool>("soft_label")) {
|
|
PADDLE_ENFORCE_EQ(softmax_dims[1], labels_dims[1],
|
|
"When Attr(soft_label) == true, the 2nd dimension of "
|
|
"Input(X) and Input(Label) should be equal.");
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(labels_dims[1], 1UL,
|
|
"When Attr(soft_label) == false, the 2nd dimension of "
|
|
"Input(Label) should be 1.");
|
|
}
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("Logits"),
|
|
ctx->GetInputDim("Softmax"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(
|
|
ctx.Input<Tensor>(framework::GradVarName("Loss"))->type()),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class SoftmaxGradMaker : public framework::SingleGradOpDescMaker {
|
|
public:
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
protected:
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
auto* grad_op = new framework::OpDesc();
|
|
grad_op->SetType("softmax_with_cross_entropy_grad");
|
|
grad_op->SetInput("Label", Input("Label"));
|
|
grad_op->SetInput("Softmax", Output("Softmax"));
|
|
grad_op->SetInput("Loss", Output("Loss"));
|
|
grad_op->SetInput(framework::GradVarName("Softmax"), OutputGrad("Softmax"));
|
|
grad_op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
|
|
grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits"));
|
|
grad_op->SetAttrMap(Attrs());
|
|
return std::unique_ptr<framework::OpDesc>(grad_op);
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(softmax_with_cross_entropy, ops::SoftmaxWithCrossEntropyOp,
|
|
ops::SoftmaxWithCrossEntropyOpMaker, ops::SoftmaxGradMaker);
|
|
REGISTER_OPERATOR(softmax_with_cross_entropy_grad,
|
|
ops::SoftmaxWithCrossEntropyOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy,
|
|
ops::SoftmaxWithCrossEntropyKernel<float>,
|
|
ops::SoftmaxWithCrossEntropyKernel<double>);
|
|
REGISTER_OP_CPU_KERNEL(softmax_with_cross_entropy_grad,
|
|
ops::SoftmaxWithCrossEntropyGradKernel<float>,
|
|
ops::SoftmaxWithCrossEntropyGradKernel<double>);
|