You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
202 lines
7.4 KiB
202 lines
7.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/sum_op.h"
|
|
#include <vector>
|
|
#include "paddle/framework/var_type_inference.h"
|
|
#include "paddle/operators/detail/safe_ref.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using framework::Tensor;
|
|
|
|
class SumOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
"Output(Out) of SumOp should not be null.");
|
|
if (ctx->IsRuntime() &&
|
|
ctx->GetOutputsVarType("Out")[0] ==
|
|
framework::proto::VarDesc::LOD_TENSOR_ARRAY) {
|
|
return; // skip runtime infershape when is tensor array;
|
|
}
|
|
|
|
auto x_dims = ctx->GetInputsDim("X");
|
|
size_t N = x_dims.size();
|
|
PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
|
|
|
|
framework::DDim in_dim({0});
|
|
for (auto& x_dim : x_dims) {
|
|
if (framework::product(x_dim) == 0) {
|
|
continue;
|
|
}
|
|
if (framework::product(in_dim) == 0) {
|
|
in_dim = x_dim;
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(in_dim, x_dim, "Input tensors must have same shape");
|
|
}
|
|
}
|
|
ctx->SetOutputDim("Out", in_dim);
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto x_vars = ctx.MultiInputVar("X");
|
|
if (x_vars[0]->IsType<framework::LoDTensor>()) {
|
|
int dtype = -1;
|
|
for (auto& x_var : x_vars) {
|
|
auto& lod_tensor = x_var->Get<framework::LoDTensor>();
|
|
if (lod_tensor.numel() == 0) {
|
|
continue;
|
|
}
|
|
if (dtype == -1) {
|
|
dtype = framework::ToDataType(lod_tensor.type());
|
|
} else {
|
|
PADDLE_ENFORCE_EQ(dtype, framework::ToDataType(lod_tensor.type()));
|
|
}
|
|
}
|
|
PADDLE_ENFORCE_NE(dtype, -1,
|
|
"Sum operator should have at least one tensor");
|
|
|
|
return framework::OpKernelType(
|
|
static_cast<framework::proto::DataType>(dtype), ctx.device_context());
|
|
} else if (x_vars[0]->IsType<framework::SelectedRows>()) {
|
|
return framework::OpKernelType(
|
|
framework::ToDataType(
|
|
x_vars[0]->Get<framework::SelectedRows>().value().type()),
|
|
ctx.device_context());
|
|
} else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
|
|
for (auto& x_var : x_vars) {
|
|
auto& array = x_var->Get<framework::LoDTensorArray>();
|
|
for (auto& each : array) {
|
|
if (each.numel() != 0) {
|
|
return framework::OpKernelType(framework::ToDataType(each.type()),
|
|
ctx.device_context());
|
|
}
|
|
}
|
|
}
|
|
PADDLE_THROW("Cannot find the input data type by all input data");
|
|
}
|
|
PADDLE_THROW("Unexpected branch. Input type is %s",
|
|
x_vars[0]->Type().name());
|
|
}
|
|
};
|
|
|
|
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SumOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
|
|
.AsDuplicable();
|
|
AddOutput("Out", "(Tensor) The output tensor of sum operator.");
|
|
AddComment(R"DOC(
|
|
Sum operator.
|
|
|
|
This operators sums the input tensors. All the inputs can carry the
|
|
LoD (Level of Details) information. However, the output only shares
|
|
the LoD information with the first input.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SumOpVarTypeInference : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(const framework::OpDesc& op_desc,
|
|
framework::BlockDesc* block) const override {
|
|
auto& inputs = op_desc.Input("X");
|
|
auto var_type = framework::proto::VarDesc::SELECTED_ROWS;
|
|
|
|
for (auto& name : op_desc.Input("X")) {
|
|
VLOG(10) << name << " "
|
|
<< block->FindRecursiveOrCreateVar(name)->GetType();
|
|
}
|
|
|
|
bool any_input_is_lod_tensor = std::any_of(
|
|
inputs.begin(), inputs.end(), [block](const std::string& name) {
|
|
return block->FindRecursiveOrCreateVar(name)->GetType() ==
|
|
framework::proto::VarDesc::LOD_TENSOR;
|
|
});
|
|
|
|
auto is_tensor_array = [block](const std::string& name) {
|
|
return detail::Ref(block->FindRecursiveOrCreateVar(name)).GetType() ==
|
|
framework::proto::VarDesc::LOD_TENSOR_ARRAY;
|
|
};
|
|
|
|
bool any_input_is_tensor_array =
|
|
std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
|
|
bool all_inputs_are_tensor_array =
|
|
std::all_of(inputs.begin(), inputs.end(), is_tensor_array);
|
|
|
|
if (any_input_is_tensor_array) {
|
|
if (!all_inputs_are_tensor_array) {
|
|
std::ostringstream os;
|
|
for (auto& each : inputs) {
|
|
os << " " << each << " type is "
|
|
<< detail::Ref(block->FindRecursiveOrCreateVar(each)).GetType()
|
|
<< "\n";
|
|
}
|
|
PADDLE_ENFORCE(all_inputs_are_tensor_array,
|
|
"Not all inputs are tensor array:\n%s", os.str());
|
|
}
|
|
var_type = framework::proto::VarDesc::LOD_TENSOR_ARRAY;
|
|
} else if (any_input_is_lod_tensor) {
|
|
var_type = framework::proto::VarDesc::LOD_TENSOR;
|
|
}
|
|
|
|
auto out_var_name = op_desc.Output("Out").front();
|
|
auto& out_var = detail::Ref(block->FindRecursiveOrCreateVar(out_var_name));
|
|
out_var.SetType(var_type);
|
|
auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front()));
|
|
out_var.SetDataType(in_var.GetDataType());
|
|
}
|
|
};
|
|
|
|
class SumGradMaker : public framework::GradOpDescMakerBase {
|
|
public:
|
|
using framework::GradOpDescMakerBase::GradOpDescMakerBase;
|
|
|
|
std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
|
|
auto x_grads = InputGrad("X", false);
|
|
std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
|
|
grad_ops.reserve(x_grads.size());
|
|
auto og = OutputGrad("Out");
|
|
std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
|
|
[&og](const std::string& x_grad) {
|
|
auto* grad_op = new framework::OpDesc();
|
|
grad_op->SetType("scale");
|
|
grad_op->SetInput("X", og);
|
|
grad_op->SetOutput("Out", {x_grad});
|
|
grad_op->SetAttr("scale", 1.0f);
|
|
return std::unique_ptr<framework::OpDesc>(grad_op);
|
|
});
|
|
return grad_ops;
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
|
|
ops::SumOpVarTypeInference);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sum, ops::SumKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SumKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::SumKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::SumKernel<paddle::platform::CPUDeviceContext, int64_t>);
|