You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
5.9 KiB
149 lines
5.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/multiplex_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
|
|
class MultiplexOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Ids"), "Input(Ids) shouldn't be null.");
|
|
PADDLE_ENFORCE(!ctx->Inputs("X").empty(),
|
|
"MultiInput(X) shouldn't be empty.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) shouldn't be null.");
|
|
auto ids_dim = ctx->GetInputDim("Ids");
|
|
PADDLE_ENFORCE(
|
|
ids_dim.size() == 2 && ids_dim[1] == 1,
|
|
"The index tensor must be a vector with size batchSize x 1.");
|
|
|
|
auto ins_dims = ctx->GetInputsDim("X");
|
|
auto num_ins = ins_dims.size();
|
|
PADDLE_ENFORCE(num_ins > 1,
|
|
"multiplex operator should have more than "
|
|
"one candidate input tensors.");
|
|
|
|
auto in_dim = ins_dims[0];
|
|
PADDLE_ENFORCE(in_dim.size() >= 2,
|
|
"The rank of candidate tensors must be not less than 2.");
|
|
for (size_t i = 1; i < num_ins; i++) {
|
|
auto dim = ins_dims[i];
|
|
PADDLE_ENFORCE(in_dim == dim,
|
|
"All the candidate tensors must have the same size.");
|
|
}
|
|
ctx->SetOutputDim("Out", in_dim);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(ctx.MultiInput<Tensor>("X")[0]->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Ids",
|
|
"Tensor<int32>, index variable which is a 2-D tensor with shape "
|
|
"[M, 1] where M is the batch size.");
|
|
AddInput("X",
|
|
"A list of variables to gather from. All variables have the same "
|
|
"shape and the rank is at least 2.")
|
|
.AsDuplicable();
|
|
AddOutput("Out", "The output tensor of multiplex operator.");
|
|
AddComment(R"DOC(
|
|
Referring to the given index variable, this layer selects rows from the
|
|
input variables to construct a multiplex variable. Assuming that there are
|
|
:math:`m` input variables and :math:`I_i` represents the i-th input
|
|
variable and :math:`i` is in [0, :math:`m`). All input variables are
|
|
tensors with same shape [:math:`d_0`, :math:`d_1`, ..., :math:`d_R`].
|
|
Please note that rank of the input tensor should be at least 2. Each input
|
|
variable will be treated as a 2-D matrix with shape [:math:`M`, :math:`N`]
|
|
where :math:`M` for :math:`d_0` and :math:`N` for :math:`d_1` * :math:`d_2`
|
|
* ... * :math:`d_R`. Let :math:`I_i[j]` be the j-th row of the i-th input
|
|
variable. The given index variable should be a 2-D tensor with shape
|
|
[:math:`M`, 1]. Let `ID[i]` be the i-th index value of the index variable.
|
|
Then the output variable will be a tensor with shape [:math:`d_0`,
|
|
:math:`d_1`, ..., :math:`d_R`]. If we treat the output tensor as a 2-D
|
|
matrix with shape [:math:`M`, :math:`N`] and let :math:`O[i]` be the i-th
|
|
row of the matrix, then `O[i]` is equal to :math:`I_{ID[i]}[i]`.
|
|
|
|
* Ids: the index tensor.
|
|
|
|
* X[0 : N - 1]: the candidate tensors for output (N >= 2).
|
|
|
|
* For each index i from 0 to batchSize - 1, the output is the i-th row of the
|
|
the (Ids[i])-th tensor.
|
|
|
|
For i-th row of the output tensor:
|
|
|
|
$$
|
|
y[i] = x_{k}[i]
|
|
$$
|
|
|
|
where $y$ is the output tensor, $x_{k}$ is the k-th input tensor,
|
|
and $k = Ids[i]$.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class MultiplexGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(!ctx->Inputs("X").empty(), "Input(X) should not be null.");
|
|
PADDLE_ENFORCE(!ctx->Outputs(framework::GradVarName("X")).empty(),
|
|
"Output(X@Grad) should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
|
"Input(Out@GRAD) should not be null.");
|
|
ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(ctx.MultiInput<Tensor>("X")[0]->type(),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker,
|
|
paddle::framework::DefaultGradOpDescMaker<false>);
|
|
REGISTER_OPERATOR(multiplex_grad, ops::MultiplexGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
multiplex,
|
|
ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::MultiplexCPUKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
multiplex_grad,
|
|
ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::MultiplexGradCPUKernel<paddle::platform::CPUDeviceContext, int64_t>);
|