You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							126 lines
						
					
					
						
							4.1 KiB
						
					
					
				
			
		
		
	
	
							126 lines
						
					
					
						
							4.1 KiB
						
					
					
				#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from __future__ import absolute_import
 | 
						|
from __future__ import division
 | 
						|
from __future__ import print_function
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import argparse
 | 
						|
import time
 | 
						|
import cProfile
 | 
						|
import os
 | 
						|
 | 
						|
import paddle
 | 
						|
import paddle.fluid as fluid
 | 
						|
import paddle.fluid.profiler as profiler
 | 
						|
 | 
						|
SEED = 1
 | 
						|
DTYPE = "float32"
 | 
						|
 | 
						|
# random seed must set before configuring the network.
 | 
						|
# fluid.default_startup_program().random_seed = SEED
 | 
						|
 | 
						|
 | 
						|
def cnn_model(data):
 | 
						|
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
 | 
						|
        input=data,
 | 
						|
        filter_size=5,
 | 
						|
        num_filters=20,
 | 
						|
        pool_size=2,
 | 
						|
        pool_stride=2,
 | 
						|
        act="relu")
 | 
						|
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
 | 
						|
        input=conv_pool_1,
 | 
						|
        filter_size=5,
 | 
						|
        num_filters=50,
 | 
						|
        pool_size=2,
 | 
						|
        pool_stride=2,
 | 
						|
        act="relu")
 | 
						|
 | 
						|
    # TODO(dzhwinter) : refine the initializer and random seed settting
 | 
						|
    SIZE = 10
 | 
						|
    input_shape = conv_pool_2.shape
 | 
						|
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
 | 
						|
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
 | 
						|
 | 
						|
    predict = fluid.layers.fc(
 | 
						|
        input=conv_pool_2,
 | 
						|
        size=SIZE,
 | 
						|
        act="softmax",
 | 
						|
        param_attr=fluid.param_attr.ParamAttr(
 | 
						|
            initializer=fluid.initializer.NormalInitializer(
 | 
						|
                loc=0.0, scale=scale)))
 | 
						|
    return predict
 | 
						|
 | 
						|
 | 
						|
def get_model(args):
 | 
						|
    if args.use_reader_op:
 | 
						|
        filelist = [
 | 
						|
            os.path.join(args.data_path, f) for f in os.listdir(args.data_path)
 | 
						|
        ]
 | 
						|
        data_file = fluid.layers.open_files(
 | 
						|
            filenames=filelist,
 | 
						|
            shapes=[[-1, 1, 28, 28], (-1, 1)],
 | 
						|
            lod_levels=[0, 0],
 | 
						|
            dtypes=["float32", "int64"],
 | 
						|
            thread_num=args.gpus,
 | 
						|
            pass_num=args.pass_num)
 | 
						|
        data_file = fluid.layers.double_buffer(
 | 
						|
            fluid.layers.batch(
 | 
						|
                data_file, batch_size=args.batch_size))
 | 
						|
        images, label = fluid.layers.read_file(data_file)
 | 
						|
    else:
 | 
						|
        images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
 | 
						|
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
 | 
						|
 | 
						|
    if args.device == 'CPU' and args.cpus > 1:
 | 
						|
        places = fluid.layers.get_places(args.cpus)
 | 
						|
        pd = fluid.layers.ParallelDo(places)
 | 
						|
        with pd.do():
 | 
						|
            predict = cnn_model(pd.read_input(images))
 | 
						|
            label = pd.read_input(label)
 | 
						|
            cost = fluid.layers.cross_entropy(input=predict, label=label)
 | 
						|
            avg_cost = fluid.layers.mean(x=cost)
 | 
						|
            batch_acc = fluid.layers.accuracy(input=predict, label=label)
 | 
						|
 | 
						|
            pd.write_output(avg_cost)
 | 
						|
            pd.write_output(batch_acc)
 | 
						|
 | 
						|
        avg_cost, batch_acc = pd()
 | 
						|
        avg_cost = fluid.layers.mean(avg_cost)
 | 
						|
        batch_acc = fluid.layers.mean(batch_acc)
 | 
						|
    else:
 | 
						|
        # Train program
 | 
						|
        predict = cnn_model(images)
 | 
						|
        cost = fluid.layers.cross_entropy(input=predict, label=label)
 | 
						|
        avg_cost = fluid.layers.mean(x=cost)
 | 
						|
 | 
						|
        # Evaluator
 | 
						|
        batch_acc = fluid.layers.accuracy(input=predict, label=label)
 | 
						|
 | 
						|
    # inference program
 | 
						|
    inference_program = fluid.default_main_program().clone()
 | 
						|
 | 
						|
    # Optimization
 | 
						|
    opt = fluid.optimizer.AdamOptimizer(
 | 
						|
        learning_rate=0.001, beta1=0.9, beta2=0.999)
 | 
						|
 | 
						|
    # Reader
 | 
						|
    train_reader = paddle.batch(
 | 
						|
        paddle.dataset.mnist.train(), batch_size=args.batch_size * args.gpus)
 | 
						|
    test_reader = paddle.batch(
 | 
						|
        paddle.dataset.mnist.test(), batch_size=args.batch_size)
 | 
						|
    return avg_cost, inference_program, opt, train_reader, test_reader, batch_acc
 |