You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/distributed/service/brpc_utils.cc

338 lines
13 KiB

/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/distributed/service/brpc_utils.h"
#include <arpa/inet.h>
#include <netdb.h>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
class Variable;
class LoDTensor;
} // namespace framework
} // namespace paddle
namespace paddle {
namespace distributed {
framework::proto::VarType::Type VarMessageToVarType(
VariableMessage::Type type) {
switch (type) {
case VariableMessage::FP32:
return framework::proto::VarType::FP32; // NOLINT
case VariableMessage::FP64:
return framework::proto::VarType::FP64; // NOLINT
case VariableMessage::INT32:
return framework::proto::VarType::INT32; // NOLINT
case VariableMessage::INT64:
return framework::proto::VarType::INT64; // NOLINT
case VariableMessage::BOOL:
return framework::proto::VarType::BOOL; // NOLINT
default:
PADDLE_THROW(platform::errors::InvalidArgument(
"VarMessageToVarType:Unsupported type %d", type));
}
}
void SerializeToMultiVarMsgAndIOBuf(
const std::string& message_name,
const std::vector<std::string>& send_var_name_val,
const std::vector<std::string>& recv_var_name_val,
const platform::DeviceContext& ctx, const framework::Scope* scope,
MultiVarMsg* request, butil::IOBuf* iobuf) {
// 1. message_name
request->set_message_name(message_name);
// 2. var_names
for (auto& send_var_name : send_var_name_val) {
request->add_send_var_names(send_var_name);
}
for (auto& recv_var_name : recv_var_name_val) {
request->add_recv_var_names(recv_var_name);
}
// 3. VarMessage
for (auto& send_var_name : send_var_name_val) {
auto* send_var_msg = request->add_var_messages();
butil::IOBuf temp_iobuf;
send_var_msg->set_varname(send_var_name);
framework::Variable* var = scope->FindVar(send_var_name);
if (var->IsType<framework::LoDTensor>()) {
SerializeLodTensor(var, ctx, send_var_msg, &temp_iobuf);
} else if (var->IsType<framework::SelectedRows>()) {
SerializeSelectedRows(var, ctx, send_var_msg, &temp_iobuf);
}
iobuf->append(temp_iobuf);
}
}
void SerializeLodTensor(framework::Variable* var,
const platform::DeviceContext& ctx, VarMsg* var_msg,
butil::IOBuf* iobuf) {
auto* tensor = var->GetMutable<framework::LoDTensor>();
var_msg->set_type(::paddle::distributed::LOD_TENSOR);
const framework::LoD lod = tensor->lod();
if (lod.size() > 0) {
var_msg->set_lod_level(lod.size());
for (auto& each : lod) {
VarMsg::LodData* lod_inner = var_msg->add_lod();
for (auto& d : each) {
lod_inner->add_lod_data(d);
}
}
}
var_msg->set_data_type(static_cast<VarMsg::Type>(tensor->type()));
for (auto& dim : framework::vectorize(tensor->dims())) {
var_msg->add_dims(dim);
}
// IO Buffer
if (platform::is_cpu_place(tensor->place())) {
auto data_len = tensor->numel() * framework::SizeOfType(tensor->type());
iobuf->append(reinterpret_cast<const char*>(&data_len), 8);
iobuf->append(reinterpret_cast<const char*>(tensor->data<void>()),
data_len);
} else {
#ifdef PADDLE_WITH_CUDA
char* temp_ptr =
new char[tensor->numel() * framework::SizeOfType(tensor->type())];
auto stream =
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
memory::Copy(platform::CPUPlace(), temp_ptr,
BOOST_GET_CONST(platform::CUDAPlace, tensor->place()),
tensor->data<void>(),
tensor->numel() * framework::SizeOfType(tensor->type()),
stream);
auto data_len = tensor->numel() * framework::SizeOfType(tensor->type());
iobuf->append(reinterpret_cast<const char*>(&data_len), 8);
iobuf->append(reinterpret_cast<const char*>(temp_ptr), data_len);
delete[] temp_ptr;
#endif
}
}
void SerializeSelectedRows(framework::Variable* var,
const platform::DeviceContext& ctx, VarMsg* var_msg,
butil::IOBuf* iobuf) {
framework::SelectedRows* slr = var->GetMutable<framework::SelectedRows>();
auto* tensor = slr->mutable_value();
auto* rows = slr->mutable_rows();
var_msg->set_type(::paddle::distributed::SELECTED_ROWS);
var_msg->set_slr_height(slr->height());
auto* var_data = var_msg->mutable_data();
var_data->clear();
var_data->resize(rows->size() * sizeof(int64_t));
char* data_ptr = const_cast<char*>(var_data->data());
if (platform::is_cpu_place(tensor->place())) {
memcpy(data_ptr, &(*rows)[0], rows->size() * sizeof(int64_t));
} else {
#ifdef PADDLE_WITH_CUDA
auto stream =
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
memory::Copy(platform::CPUPlace(), data_ptr,
BOOST_GET_CONST(platform::CUDAPlace, tensor->place()),
&(*rows)[0], rows->size() * sizeof(int64_t), stream);
#endif
}
var_msg->set_data_type(static_cast<VarMsg::Type>(tensor->type()));
for (auto& dim : framework::vectorize(tensor->dims())) {
var_msg->add_dims(dim);
}
// IO Buffer
if (platform::is_cpu_place(tensor->place())) {
auto data_len = tensor->numel() * framework::SizeOfType(tensor->type());
iobuf->append(reinterpret_cast<const char*>(&data_len), 8);
iobuf->append(reinterpret_cast<const char*>(tensor->data<void>()),
data_len);
} else {
#ifdef PADDLE_WITH_CUDA
char* temp_ptr =
new char[tensor->numel() * framework::SizeOfType(tensor->type())];
auto stream =
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
memory::Copy(platform::CPUPlace(), temp_ptr,
BOOST_GET_CONST(platform::CUDAPlace, tensor->place()),
tensor->data<void>(),
tensor->numel() * framework::SizeOfType(tensor->type()),
stream);
auto data_len = tensor->numel() * framework::SizeOfType(tensor->type());
iobuf->append(reinterpret_cast<const char*>(&data_len), 8);
iobuf->append(reinterpret_cast<const char*>(temp_ptr), data_len);
delete[] temp_ptr;
#endif
}
}
void DeserializeFromMultiVarMsgAndIOBuf(const MultiVarMsg& multi_msg,
const butil::IOBuf* iobuf,
const platform::DeviceContext& ctx,
framework::Scope* scope) {
butil::IOBufBytesIterator io_buffer_itr(*iobuf);
// size_t shard_buffer_remain = res_io_buffer.size();
for (int recv_var_index = 0; recv_var_index < multi_msg.send_var_names_size();
++recv_var_index) {
const auto& msg = multi_msg.var_messages(recv_var_index);
auto* var = scope->Var(msg.varname());
if (msg.type() == ::paddle::distributed::LOD_TENSOR) {
DeserializeLodTensor(var, msg, io_buffer_itr, ctx);
} else if (msg.type() == ::paddle::distributed::SELECTED_ROWS) {
DeserializeSelectedRows(var, msg, io_buffer_itr, ctx);
}
}
}
void DeserializeFromMultiVarMsgAndIOBuf(const MultiVarMsg& multi_msg,
const butil::IOBuf* iobuf,
const platform::DeviceContext& ctx,
const framework::Scope* scope) {
butil::IOBufBytesIterator io_buffer_itr(*iobuf);
// size_t shard_buffer_remain = res_io_buffer.size();
for (int recv_var_index = 0; recv_var_index < multi_msg.send_var_names_size();
++recv_var_index) {
const auto& msg = multi_msg.var_messages(recv_var_index);
auto* var = scope->FindVar(msg.varname());
PADDLE_ENFORCE_NE(var, nullptr,
platform::errors::InvalidArgument(
"Not find variable %s in scope.", msg.varname()));
if (msg.type() == ::paddle::distributed::LOD_TENSOR) {
DeserializeLodTensor(var, msg, io_buffer_itr, ctx);
} else if (msg.type() == ::paddle::distributed::SELECTED_ROWS) {
DeserializeSelectedRows(var, msg, io_buffer_itr, ctx);
}
}
}
void DeserializeLodTensor(framework::Variable* var, const VarMsg& msg,
butil::IOBufBytesIterator& io_buffer_itr,
const platform::DeviceContext& ctx) {
const auto place = ctx.GetPlace();
framework::LoDTensor* tensor = var->GetMutable<framework::LoDTensor>();
std::vector<int> vec_dim;
for (auto& x : msg.dims()) {
vec_dim.push_back(x);
}
tensor->Resize(framework::make_ddim(vec_dim));
framework::LoD lod;
for (int i = 0; i < msg.lod_level(); ++i) {
framework::Vector<size_t> v;
for (int j = 0; j < msg.lod(i).lod_data_size(); ++j) {
v.push_back(msg.lod(i).lod_data(j));
}
lod.push_back(v);
}
tensor->set_lod(lod);
void* tensor_data =
tensor->mutable_data(place, VarMessageToVarType(msg.data_type()));
// IO Buffer
if (platform::is_cpu_place(place)) {
unsigned long data_len;
io_buffer_itr.copy_and_forward((void*)(&data_len), 8);
io_buffer_itr.copy_and_forward(tensor_data, data_len);
} else if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
unsigned long data_len;
char* temp_ptr =
new char[tensor->numel() * framework::SizeOfType(tensor->type())];
io_buffer_itr.copy_and_forward((void*)(&data_len), 8);
io_buffer_itr.copy_and_forward((void*)temp_ptr, data_len);
auto stream =
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place), tensor_data,
platform::CPUPlace(), (void*)temp_ptr,
tensor->numel() * framework::SizeOfType(tensor->type()),
stream);
delete[] temp_ptr;
#endif
}
}
void DeserializeSelectedRows(framework::Variable* var, const VarMsg& msg,
butil::IOBufBytesIterator& io_buffer_itr,
const platform::DeviceContext& ctx) {
const auto place = ctx.GetPlace();
auto* slr = var->GetMutable<framework::SelectedRows>();
framework::Tensor* tensor = slr->mutable_value();
slr->set_height(msg.slr_height());
std::vector<int64_t> tmp_rows(msg.slr_height());
memcpy(&tmp_rows[0], msg.data().data(), msg.slr_height() * sizeof(int64_t));
slr->set_rows(tmp_rows);
std::vector<int> vec_dim;
for (auto& x : msg.dims()) {
vec_dim.push_back(x);
}
tensor->Resize(framework::make_ddim(vec_dim));
void* tensor_data =
tensor->mutable_data(place, VarMessageToVarType(msg.data_type()));
// IO Buffer
if (platform::is_cpu_place(place)) {
unsigned long data_len;
io_buffer_itr.copy_and_forward((void*)(&data_len), 8);
io_buffer_itr.copy_and_forward(tensor_data, data_len);
} else if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
char* temp_ptr =
new char[tensor->numel() * framework::SizeOfType(tensor->type())];
unsigned long data_len;
io_buffer_itr.copy_and_forward((void*)(&data_len), 8);
io_buffer_itr.copy_and_forward(temp_ptr, data_len);
auto stream =
reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place), tensor_data,
platform::CPUPlace(), temp_ptr,
tensor->numel() * framework::SizeOfType(tensor->type()),
stream);
delete[] temp_ptr;
#endif
}
}
std::string GetIntTypeEndpoint(const std::string& ip, const uint32_t& port) {
// There are usually two forms of IP address: ip(int) / ip (hostname)
// If there're some problem with DNS, or ip triggers the bug of Brpc
// We will try to get the IP address of the domain name manually again
std::string ip_port = ip + ":" + std::to_string(port);
struct hostent* hp = NULL;
hp = gethostbyname(ip.c_str());
if (NULL == hp) {
LOG(ERROR) << "Brpc Start failed, ip_port= " << ip_port
<< " , Error infomation: " << hstrerror(h_errno);
}
int i = 0;
char* int_ip = NULL;
while (hp->h_addr_list[i] != NULL) {
int_ip = inet_ntoa(*(struct in_addr*)hp->h_addr_list[i]);
VLOG(0) << "Brpc Get host by name, host:" << ip << " -> ip: " << int_ip;
break;
}
std::string str_ip = int_ip;
std::string int_ip_port = str_ip + ":" + std::to_string(port);
return int_ip_port;
}
} // namespace distributed
} // namespace paddle