You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/details/gather_op_handle_test.cc

231 lines
7.8 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/gather_op_handle.h"
#include "gtest/gtest.h"
namespace paddle {
namespace framework {
namespace details {
struct DummyVarHandle;
namespace f = paddle::framework;
namespace p = paddle::platform;
using DeviceType = paddle::platform::DeviceType;
// test data amount
const f::DDim kDims = {20, 20};
struct TestGatherOpHandle {
std::vector<std::unique_ptr<p::DeviceContext>> ctxs_;
std::vector<Scope*> local_scopes_;
std::vector<Scope*> param_scopes_;
Scope g_scope_;
OpHandleBase* op_handle_;
std::vector<VarHandleBase*> vars_;
std::vector<p::Place> gpu_list_;
std::vector<std::unique_ptr<ir::Node>> nodes_;
void WaitAll() {
for (size_t j = 0; j < ctxs_.size(); ++j) {
ctxs_[j]->Wait();
}
}
void InitCtxOnGpu(bool use_gpu) {
if (use_gpu) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
int count = p::GetCUDADeviceCount();
if (count <= 1) {
LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA "
"device count is "
<< count;
exit(0);
}
for (int i = 0; i < count; ++i) {
auto p = p::CUDAPlace(i);
gpu_list_.push_back(p);
ctxs_.emplace_back(new p::CUDADeviceContext(p));
}
#else
PADDLE_THROW(
platform::errors::PreconditionNotMet("Not compiled with CUDA."));
#endif
} else {
int count = 8;
for (int i = 0; i < count; ++i) {
auto p = p::CPUPlace();
gpu_list_.push_back(p);
ctxs_.emplace_back(new p::CPUDeviceContext(p));
}
}
}
void InitGatherOp(size_t input_scope_idx) {
nodes_.clear();
std::unordered_map<Scope*, Scope*> scope_map;
for (size_t j = 0; j < gpu_list_.size(); ++j) {
local_scopes_.push_back(&(g_scope_.NewScope()));
Scope& local_scope = local_scopes_.back()->NewScope();
local_scope.Var("input");
param_scopes_.emplace_back(&local_scope);
scope_map.emplace(local_scopes_.back(), param_scopes_.back());
}
param_scopes_[input_scope_idx]->Var("out");
nodes_.emplace_back(
ir::CreateNodeForTest("node", ir::Node::Type::kOperation).release());
op_handle_ =
new GatherOpHandle(nodes_.back().get(), local_scopes_, gpu_list_);
op_handle_->SetLocalExecScopes(scope_map);
// add input
for (size_t j = 0; j < gpu_list_.size(); ++j) {
op_handle_->SetDeviceContext(gpu_list_[j], ctxs_[j].get());
nodes_.emplace_back(
ir::CreateNodeForTest("node1", ir::Node::Type::kVariable).release());
auto* in_var_handle =
new VarHandle(nodes_.back().get(), 1, j, "input", gpu_list_[j]);
vars_.emplace_back(in_var_handle);
op_handle_->AddInput(in_var_handle);
}
// add dummy var
nodes_.emplace_back(
ir::CreateNodeForTest("node2", ir::Node::Type::kVariable).release());
vars_.emplace_back(new DummyVarHandle(nodes_.back().get()));
DummyVarHandle* in_dummy_var_handle =
static_cast<DummyVarHandle*>(vars_.back());
in_dummy_var_handle->ClearGeneratedOp();
op_handle_->AddInput(in_dummy_var_handle);
// add output
nodes_.emplace_back(
ir::CreateNodeForTest("node3", ir::Node::Type::kVariable).release());
auto* out_var_handle =
new VarHandle(nodes_.back().get(), 2, input_scope_idx, "out",
gpu_list_[input_scope_idx]);
vars_.emplace_back(out_var_handle);
op_handle_->AddOutput(out_var_handle);
// add dummy var
nodes_.emplace_back(
ir::CreateNodeForTest("node4", ir::Node::Type::kVariable).release());
vars_.emplace_back(new DummyVarHandle(nodes_.back().get()));
DummyVarHandle* dummy_var_handle =
static_cast<DummyVarHandle*>(vars_.back());
op_handle_->AddOutput(dummy_var_handle);
}
void TestGatherSelectedRows(size_t output_scope_idx) {
int height = kDims[0] * 2;
std::vector<int64_t> rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1,
2, 4, 6, 3, 1, 1, 1, 1, 3, 7};
std::vector<float> send_vector(f::product(kDims));
for (size_t k = 0; k < send_vector.size(); ++k) {
send_vector[k] = k;
}
for (size_t input_scope_idx = 0; input_scope_idx < gpu_list_.size();
++input_scope_idx) {
auto in_var = param_scopes_.at(input_scope_idx)->FindVar("input");
PADDLE_ENFORCE_NOT_NULL(
in_var, platform::errors::NotFound(
"The variable '%s' is not found in the scope.", "input"));
auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
auto value = in_selected_rows->mutable_value();
value->mutable_data<float>(kDims, gpu_list_[input_scope_idx]);
in_selected_rows->set_height(height);
in_selected_rows->set_rows(rows);
paddle::framework::TensorFromVector<float>(
send_vector, *(ctxs_[input_scope_idx]), value);
value->Resize(kDims);
}
auto out_var = param_scopes_.at(output_scope_idx)->FindVar("out");
PADDLE_ENFORCE_NOT_NULL(
out_var, platform::errors::NotFound(
"The variable '%s' is not found in the scope.", "out"));
auto out_selected_rows = out_var->GetMutable<f::SelectedRows>();
auto in_var = param_scopes_.at(output_scope_idx)->FindVar("input");
auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
out_selected_rows->mutable_value()->ShareDataWith(
in_selected_rows->value());
DeviceType use_device = p::kCPU;
op_handle_->Run(use_device);
WaitAll();
p::CPUPlace cpu_place;
auto& out_select_rows = out_var->Get<f::SelectedRows>();
auto rt = out_select_rows.value();
PADDLE_ENFORCE_EQ(out_select_rows.height(), height,
platform::errors::InvalidArgument(
"The height of SelectedRows is not equal to "
"the expected, expect %d, but got %d.",
height, out_select_rows.height()));
for (size_t k = 0; k < out_select_rows.rows().size(); ++k) {
PADDLE_ENFORCE_EQ(
out_select_rows.rows()[k], rows[k % rows.size()],
platform::errors::InvalidArgument(
"The item at position %d of rows of SelectedRows is not equal to "
"the expected, expect %d, but got %d.",
k, rows[k % rows.size()], out_select_rows.rows()[k]));
}
f::Tensor result_tensor;
f::TensorCopy(rt, cpu_place, *(ctxs_[output_scope_idx]), &result_tensor);
float* ct = result_tensor.data<float>();
for (int64_t j = 0;
j < f::product(kDims) * static_cast<int64_t>(gpu_list_.size()); ++j) {
ASSERT_NEAR(ct[j], send_vector[j % send_vector.size()], 1e-5);
}
}
};
TEST(GatherTester, TestCPUGatherTestSelectedRows) {
TestGatherOpHandle test_op;
size_t input_scope_idx = 0;
test_op.InitCtxOnGpu(false);
test_op.InitGatherOp(input_scope_idx);
test_op.TestGatherSelectedRows(input_scope_idx);
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
TEST(GatherTester, TestGPUGatherTestSelectedRows) {
TestGatherOpHandle test_op;
size_t input_scope_idx = 0;
test_op.InitCtxOnGpu(false);
test_op.InitGatherOp(input_scope_idx);
test_op.TestGatherSelectedRows(input_scope_idx);
}
#endif
} // namespace details
} // namespace framework
} // namespace paddle