You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
295 lines
10 KiB
295 lines
10 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/details/op_handle_base.h"
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
#include "paddle/fluid/framework/scope.h"
|
|
#ifdef PADDLE_WITH_CUDA
|
|
#include "paddle/fluid/platform/dynload/nccl.h"
|
|
#endif
|
|
#ifdef PADDLE_WITH_HIP
|
|
#include "paddle/fluid/platform/dynload/rccl.h"
|
|
#endif
|
|
#include "paddle/fluid/platform/nccl_helper.h"
|
|
|
|
DECLARE_bool(sync_nccl_allreduce);
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
namespace details {
|
|
|
|
class NCCLOpHandleBase : public OpHandleBase {
|
|
public:
|
|
NCCLOpHandleBase(ir::Node* node, const std::vector<platform::Place>& places,
|
|
const platform::NCCLCommunicator* nccl_ctxs)
|
|
: OpHandleBase(node), places_(places), nccl_ctxs_(nccl_ctxs) {
|
|
if (nccl_ctxs == nullptr) {
|
|
return;
|
|
}
|
|
// init device context
|
|
auto default_nccl_ctxs = nccl_ctxs_->DefaultFlatCtx();
|
|
for (auto& p : places_) {
|
|
this->SetDeviceContext(p, default_nccl_ctxs->DevCtx(p));
|
|
}
|
|
}
|
|
virtual ~NCCLOpHandleBase() {
|
|
for (auto& ev : inter_events_) {
|
|
#ifdef PADDLE_WITH_HIP
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(hipEventDestroy(ev.second));
|
|
#else
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventDestroy(ev.second));
|
|
#endif
|
|
}
|
|
for (auto& ev : exter_events_) {
|
|
#ifdef PADDLE_WITH_HIP
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(hipEventDestroy(ev.second));
|
|
#else
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventDestroy(ev.second));
|
|
#endif
|
|
}
|
|
}
|
|
void SetRunEnv(int run_order, bool use_hierarchical_allreduce) {
|
|
PADDLE_ENFORCE_GE(
|
|
run_order, 0,
|
|
platform::errors::InvalidArgument(
|
|
"The argument run_order must be >= 0, but got %d.", run_order));
|
|
run_order_ = run_order;
|
|
use_hierarchical_allreduce_ = use_hierarchical_allreduce;
|
|
|
|
VLOG(10) << "SetRunEnv "
|
|
<< " run_order:" << run_order
|
|
<< ", use_hierarchical_allreduce:" << use_hierarchical_allreduce
|
|
<< ", nccl_ctx_:" << nccl_ctxs_;
|
|
|
|
if (nccl_ctxs_ == nullptr) {
|
|
return;
|
|
}
|
|
|
|
if (!use_hierarchical_allreduce_) {
|
|
auto ctxs = nccl_ctxs_->GetFlatCtx(run_order);
|
|
for (auto& p : places_) {
|
|
this->SetDeviceContext(p, ctxs->DevCtx(p));
|
|
}
|
|
return;
|
|
}
|
|
|
|
PADDLE_ENFORCE_EQ(places_.size(), 1,
|
|
platform::errors::InvalidArgument(
|
|
"HierarchicalAllReduce can only run "
|
|
"one proccess with one card mode, but got %d cards.",
|
|
places_.size()));
|
|
|
|
for (auto& p : places_) {
|
|
auto ctxs = nccl_ctxs_->GetHierarchicalInterCtx(run_order);
|
|
this->SetDeviceContext(p, ctxs->DevCtx(p));
|
|
}
|
|
|
|
for (auto& p : dev_ctxes_) {
|
|
int dev_id = BOOST_GET_CONST(platform::CUDAPlace, p.first).device;
|
|
if (inter_events_.find(dev_id) != inter_events_.end()) {
|
|
continue;
|
|
}
|
|
|
|
platform::SetDeviceId(dev_id);
|
|
#ifdef PADDLE_WITH_HIP
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(hipEventCreateWithFlags(
|
|
&inter_events_[dev_id], hipEventDisableTiming));
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(hipEventCreateWithFlags(
|
|
&exter_events_[dev_id], hipEventDisableTiming));
|
|
#else
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventCreateWithFlags(
|
|
&inter_events_[dev_id], cudaEventDisableTiming));
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(cudaEventCreateWithFlags(
|
|
&exter_events_[dev_id], cudaEventDisableTiming));
|
|
#endif
|
|
VLOG(10) << "Create events on dev_id:" << dev_id
|
|
<< ", inter_event:" << &inter_events_[dev_id]
|
|
<< ", exter_event:" << &exter_events_[dev_id];
|
|
}
|
|
}
|
|
|
|
void FlatNCCLAllReduce(platform::Place place, const void* sendbuff,
|
|
void* recvbuff, size_t count, ncclDataType_t datatype,
|
|
ncclRedOp_t op) {
|
|
PADDLE_ENFORCE_GE(
|
|
run_order_, 0,
|
|
platform::errors::InvalidArgument(
|
|
"The argument run_order_ must be >= 0, but got %d.", run_order_));
|
|
auto flat_nccl_ctxs = nccl_ctxs_->GetFlatCtx(run_order_);
|
|
int dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
|
|
auto& nccl_ctx = flat_nccl_ctxs->at(dev_id);
|
|
auto stream = nccl_ctx.stream();
|
|
auto comm = nccl_ctx.comm_;
|
|
|
|
VLOG(10) << "before all reduce buffer:" << sendbuff << ", numel:" << count
|
|
<< ", dev_id:" << dev_id << ", dtype:" << datatype
|
|
<< ", place:" << place;
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
|
|
sendbuff, recvbuff, count, datatype, op, comm, stream));
|
|
}
|
|
|
|
void NCCLAllReduce(platform::Place place, const void* sendbuff,
|
|
void* recvbuff, size_t count, ncclDataType_t datatype,
|
|
ncclRedOp_t op) {
|
|
PADDLE_ENFORCE_GE(
|
|
run_order_, 0,
|
|
platform::errors::InvalidArgument(
|
|
"The argument run_order_ must be >= 0, but got %d.", run_order_));
|
|
if (!use_hierarchical_allreduce_) {
|
|
FlatNCCLAllReduce(place, sendbuff, recvbuff, count, datatype, op);
|
|
return;
|
|
}
|
|
|
|
HierarchicalAllReduce(place, sendbuff, recvbuff, count, datatype, op);
|
|
}
|
|
|
|
void HierarchicalAllReduce(platform::Place place, const void* sendbuff,
|
|
void* recvbuff, size_t count,
|
|
ncclDataType_t datatype, ncclRedOp_t op) {
|
|
PADDLE_ENFORCE_GE(
|
|
run_order_, 0,
|
|
platform::errors::InvalidArgument(
|
|
"The argument run_order_ must be >= 0, but got %d.", run_order_));
|
|
InterReduce(place, sendbuff, recvbuff, count, datatype, op);
|
|
// When a trainer is not in exter allreduce ring
|
|
// they need not to call this.
|
|
if (nccl_ctxs_->NeedExterAllReduce()) {
|
|
ExterAllReduce(place, recvbuff, recvbuff, count, datatype, op);
|
|
}
|
|
InterBroadCast(place, recvbuff, count, datatype, op);
|
|
}
|
|
|
|
protected:
|
|
void InterReduce(platform::Place place, const void* sendbuff, void* recvbuff,
|
|
size_t count, ncclDataType_t datatype, ncclRedOp_t op) {
|
|
auto nccl_ctxs = nccl_ctxs_->GetHierarchicalInterCtx(run_order_);
|
|
int dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
|
|
auto& nccl_ctx = nccl_ctxs->at(dev_id);
|
|
auto stream = nccl_ctx.stream();
|
|
auto comm = nccl_ctx.comm_;
|
|
|
|
VLOG(10) << "before all reduce"
|
|
<< " run_order:" << run_order_ << ", buffer:" << sendbuff
|
|
<< ", numel:" << count << ", dev_id:" << dev_id
|
|
<< ", dtype:" << datatype << ", place:" << place
|
|
<< ", stream:" << stream;
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclReduce(
|
|
sendbuff, recvbuff, count, datatype, ncclSum, 0, comm, stream));
|
|
|
|
#ifdef PADDLE_WITH_HIP
|
|
hipEventRecord(inter_events_.at(dev_id), stream);
|
|
#else
|
|
cudaEventRecord(inter_events_.at(dev_id), stream);
|
|
#endif
|
|
|
|
if (FLAGS_sync_nccl_allreduce) {
|
|
#ifdef PADDLE_WITH_HIP
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream));
|
|
#else
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void ExterAllReduce(platform::Place place, const void* sendbuff,
|
|
void* recvbuff, size_t count, ncclDataType_t datatype,
|
|
ncclRedOp_t op) {
|
|
auto nccl_ctxs = nccl_ctxs_->GetHierarchicalExterCtx(run_order_);
|
|
PADDLE_ENFORCE_NOT_NULL(
|
|
nccl_ctxs_, platform::errors::NotFound(
|
|
"Can't get exter %d nccl contexts.", run_order_));
|
|
int dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
|
|
auto& nccl_ctx = nccl_ctxs->at(dev_id);
|
|
auto stream = nccl_ctx.stream();
|
|
auto comm = nccl_ctx.comm_;
|
|
|
|
VLOG(10) << "before all reduce run_order:" << run_order_
|
|
<< "buffer:" << sendbuff << ", numel:" << count
|
|
<< ", dev_id:" << dev_id << ", dtype:" << datatype
|
|
<< ", place:" << place << ", stream:" << stream;
|
|
|
|
#ifdef PADDLE_WITH_HIP
|
|
hipStreamWaitEvent(stream, inter_events_.at(dev_id), 0);
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
|
|
sendbuff, recvbuff, count, datatype, op, comm, stream));
|
|
|
|
hipEventRecord(exter_events_.at(dev_id), stream);
|
|
|
|
if (FLAGS_sync_nccl_allreduce) {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream));
|
|
}
|
|
#else
|
|
cudaStreamWaitEvent(stream, inter_events_.at(dev_id), 0);
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
|
|
sendbuff, recvbuff, count, datatype, op, comm, stream));
|
|
|
|
cudaEventRecord(exter_events_.at(dev_id), stream);
|
|
|
|
if (FLAGS_sync_nccl_allreduce) {
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void InterBroadCast(platform::Place place, void* sendbuff, size_t count,
|
|
ncclDataType_t datatype, ncclRedOp_t op) {
|
|
auto nccl_ctxs = nccl_ctxs_->GetHierarchicalInterCtx(run_order_);
|
|
int dev_id = BOOST_GET_CONST(platform::CUDAPlace, place).device;
|
|
auto& nccl_ctx = nccl_ctxs->at(dev_id);
|
|
auto stream = nccl_ctx.stream();
|
|
auto comm = nccl_ctx.comm_;
|
|
|
|
VLOG(10) << "before InterBroadCast buffer:" << sendbuff
|
|
<< ", numel:" << count << ", dev_id:" << dev_id
|
|
<< ", dtype:" << datatype << ", place:" << place
|
|
<< ", stream:" << stream;
|
|
#ifdef PADDLE_WITH_HIP
|
|
hipStreamWaitEvent(stream, exter_events_.at(dev_id), 0);
|
|
#else
|
|
cudaStreamWaitEvent(stream, exter_events_.at(dev_id), 0);
|
|
#endif
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclBcast(
|
|
sendbuff, count, datatype, 0, comm, stream));
|
|
}
|
|
|
|
protected:
|
|
std::vector<platform::Place> places_;
|
|
const platform::NCCLCommunicator* nccl_ctxs_{nullptr};
|
|
// When multi trainer call collective function, they need run the same order.
|
|
// Or the program will hang.So we use allreduce_deps_pass to set this
|
|
// run_order_.
|
|
int run_order_{0};
|
|
// Use 2d allreduce or not.
|
|
bool use_hierarchical_allreduce_{false};
|
|
|
|
private:
|
|
// hierarchical needed events
|
|
std::unordered_map<int, gpuEvent_t> inter_events_;
|
|
std::unordered_map<int, gpuEvent_t> exter_events_;
|
|
};
|
|
|
|
} // namespace details
|
|
} // namespace framework
|
|
} // namespace paddle
|