You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/details/reduce_and_gather.h

156 lines
5.4 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <map>
#include <vector>
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
namespace paddle {
namespace framework {
namespace details {
struct ReduceLoDTensor {
const std::vector<const LoDTensor *> &src_tensors_;
LoDTensor &dst_tensor_;
ReduceLoDTensor(const std::vector<const LoDTensor *> &src, LoDTensor *dst)
: src_tensors_(src), dst_tensor_(*dst) {}
template <typename T>
void apply() const {
PADDLE_ENFORCE_NE(src_tensors_.empty(), true,
platform::errors::InvalidArgument(
"The number of tensors to be reduced is 0."));
auto &t0 = *src_tensors_[0];
PADDLE_ENFORCE_NE(t0.numel(), 0,
platform::errors::InvalidArgument(
"The size of first tensor to be reduced is 0."));
dst_tensor_.Resize(t0.dims());
T *dst = dst_tensor_.mutable_data<T>(platform::CPUPlace());
for (size_t i = 0; i < src_tensors_.size(); ++i) {
auto &t = *src_tensors_[i];
if (dst == t.data<T>()) {
continue;
}
PADDLE_ENFORCE_EQ(t.dims(), t0.dims(),
platform::errors::InvalidArgument(
"The shape of tensors to be reduced must be "
"consistent. The shape of current tensor is %s, "
"but the shape of the first tensor is %s.",
t.dims(), t0.dims()));
PADDLE_ENFORCE_EQ(t.type(), t0.type(),
platform::errors::InvalidArgument(
"The type of tensors to be reduced must be "
"consistent. The type of current tensor is %s, "
"but the type of the first tensor is %s.",
t.type(), t0.type()));
std::transform(t.data<T>(), t.data<T>() + t.numel(), dst, dst,
[](T a, T b) -> T { return a + b; });
}
}
};
struct ReduceBufferData {
const std::vector<const void *> &src_data_;
void *dst_data_;
int64_t numel_;
ReduceBufferData(const std::vector<const void *> &src, void *dst,
int64_t numel)
: src_data_(src), dst_data_(dst), numel_(numel) {}
template <typename T>
void apply() const {
T *dst_data = reinterpret_cast<T *>(dst_data_);
for (size_t i = 0; i < src_data_.size(); ++i) {
auto srd_data = reinterpret_cast<const T *>(src_data_[i]);
VLOG(10) << "dst: " << dst_data_ << ", " << srd_data;
if (srd_data == dst_data_) {
continue;
}
std::transform(srd_data, srd_data + numel_, dst_data, dst_data,
[](T a, T b) -> T { return a + b; });
}
}
};
struct GatherLocalSelectedRowsFunctor {
GatherLocalSelectedRowsFunctor(
const std::vector<const SelectedRows *> &src_selected_rows,
const std::vector<platform::Place> &in_places,
const std::map<platform::Place, platform::DeviceContext *> &dev_ctxes,
const platform::Place &out_place, SelectedRows *dst_selected_rows)
: dev_ctxes_(dev_ctxes),
in_places_(in_places),
out_place_(out_place),
dst_selected_rows_(dst_selected_rows) {
PADDLE_ENFORCE_NE(src_selected_rows.empty(), true,
platform::errors::InvalidArgument(
"The number of selected_rows to be gathered is 0."));
std::vector<int64_t> out_rows;
for (auto in_sr_ptr : src_selected_rows) {
auto &in_sr = *in_sr_ptr;
in_tensors_.emplace_back(in_sr.value());
out_rows.insert(out_rows.end(), in_sr.rows().begin(), in_sr.rows().end());
}
auto &pre_in = src_selected_rows[0];
auto &dst_tensor = *dst_selected_rows_;
dst_tensor.set_height(pre_in->height());
dst_tensor.set_rows(out_rows);
size_t rows = out_rows.size();
DDim out_dim = pre_in->GetCompleteDims();
out_dim[0] = static_cast<int64_t>(rows);
dst_tensor.mutable_value()->Resize(out_dim);
dst_tensor.mutable_value()->mutable_data(out_place, pre_in->value().type());
}
void operator()() {
auto *out_tensor = dst_selected_rows_->mutable_value();
// copy
int s = 0, e = 0;
for (size_t j = 0; j < in_tensors_.size(); ++j) {
e += in_tensors_[j].dims()[0];
auto sub_out = out_tensor->Slice(s, e);
paddle::framework::TensorCopy(in_tensors_[j], out_place_,
*(dev_ctxes_.at(in_places_[j])), &sub_out);
s = e;
}
}
private:
const std::map<platform::Place, platform::DeviceContext *> &dev_ctxes_;
std::vector<platform::Place> in_places_;
std::vector<Tensor> in_tensors_;
platform::Place out_place_;
SelectedRows *dst_selected_rows_;
};
} // namespace details
} // namespace framework
} // namespace paddle