You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
421 lines
12 KiB
421 lines
12 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/naive_executor.h"
|
|
#include "paddle/fluid/framework/op_compatible_info.h"
|
|
#include "paddle/fluid/inference/analysis/analyzer.h"
|
|
#include "paddle/fluid/inference/api/api_impl.h"
|
|
#include "paddle/fluid/inference/api/details/reset_tensor_array.h"
|
|
#include "paddle/fluid/inference/api/helper.h"
|
|
#include "paddle/fluid/inference/api/paddle_inference_api.h"
|
|
#include "paddle/fluid/string/printf.h"
|
|
#ifdef PADDLE_WITH_TESTING
|
|
#include <gtest/gtest.h>
|
|
#include <gtest/gtest_prod.h>
|
|
#endif
|
|
|
|
///
|
|
/// \file analysis_predictor.h
|
|
///
|
|
/// \brief Compared to NativePredictor, AnalysisPredictor is a high-performance
|
|
/// predictor that includes many optimizations
|
|
///
|
|
/// \author paddle-infer@baidu.com
|
|
/// \date 2020-01-01
|
|
/// \since 1.7.0
|
|
///
|
|
|
|
namespace paddle {
|
|
|
|
using inference::analysis::Argument;
|
|
using inference::analysis::Analyzer;
|
|
using framework::proto::ProgramDesc;
|
|
using framework::NaiveExecutor;
|
|
|
|
///
|
|
/// \class AnalysisPredictor
|
|
///
|
|
/// \brief The analysis predictor is based on the original native predictor with
|
|
/// IR and Analysis support. It will optimize IR and Parameters in the runtime.
|
|
///
|
|
/// The predictor has the following typical uses:
|
|
///
|
|
/// Get predictor
|
|
/// \code{cpp}
|
|
/// auto predictor = CreatePaddlePredictor(config);
|
|
/// \endcode
|
|
///
|
|
/// Get input or output names
|
|
/// \code{cpp}
|
|
/// auto input_names = predictor->GetInputNames();
|
|
/// auto output_names = predictor->GetOutputNames();
|
|
/// \endcode
|
|
///
|
|
/// Get input or output tensors
|
|
/// \code{cpp}
|
|
/// auto input_t = predictor->GetInputTensor(input_names[0]);
|
|
/// auto output_t = predictor->GetOutputTensor(output_names[0]);
|
|
/// \endcode
|
|
///
|
|
/// Run predictor
|
|
/// \code{cpp}
|
|
/// predictor->ZeroCopyRun();
|
|
/// \endcode
|
|
///
|
|
class AnalysisPredictor : public PaddlePredictor {
|
|
public:
|
|
///
|
|
/// \brief Construct a new Analysis Predictor object
|
|
///
|
|
/// \param[in] AnalysisConfig config
|
|
///
|
|
explicit AnalysisPredictor(const AnalysisConfig &config) : config_(config) {
|
|
predictor_id_ = inference::GetUniqueId();
|
|
}
|
|
///
|
|
/// \brief Destroy the Analysis Predictor object
|
|
///
|
|
~AnalysisPredictor();
|
|
|
|
///
|
|
/// \brief Initialize predictor
|
|
///
|
|
/// Initializing predictor mainly includes the following tasks:
|
|
/// preparing scope, creating executor, preparing program, initializing the
|
|
/// variables required by the executor, getting the feed_target_names and
|
|
/// fetch_target_names, etc.
|
|
///
|
|
/// \param[in] parent_scope parent scope
|
|
/// \param[in] program program
|
|
/// \return Whether the init function executed successfully
|
|
///
|
|
bool Init(const std::shared_ptr<framework::Scope> &parent_scope,
|
|
const std::shared_ptr<framework::ProgramDesc> &program = nullptr);
|
|
|
|
///
|
|
/// \brief Run the prediction engine. Deprecated. Please refer to ZeroCopyRun
|
|
///
|
|
/// \param[in] inputs input tensors
|
|
/// \param[out] output_data output tensors
|
|
/// \param[in] batch_size data's batch size
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool Run(const std::vector<PaddleTensor> &inputs,
|
|
std::vector<PaddleTensor> *output_data,
|
|
int batch_size = -1) override;
|
|
|
|
///
|
|
/// \brief Get the input names
|
|
///
|
|
/// \return input names
|
|
///
|
|
std::vector<std::string> GetInputNames();
|
|
///
|
|
/// \brief Get the output names
|
|
///
|
|
/// \return output names
|
|
///
|
|
std::vector<std::string> GetOutputNames();
|
|
|
|
///
|
|
/// \brief Get the Input Tensor object
|
|
///
|
|
/// \param[in] name input name
|
|
/// \return input tensor
|
|
///
|
|
std::unique_ptr<ZeroCopyTensor> GetInputTensor(
|
|
const std::string &name) override;
|
|
///
|
|
/// \brief Get the Output Tensor object
|
|
///
|
|
/// \param[in] name otuput name
|
|
/// \return output tensor
|
|
///
|
|
std::unique_ptr<ZeroCopyTensor> GetOutputTensor(
|
|
const std::string &name) override;
|
|
///
|
|
/// \brief Get all input names and their corresponding shapes
|
|
///
|
|
/// \return the map of input names and shapes
|
|
///
|
|
std::map<std::string, std::vector<int64_t>> GetInputTensorShape() override;
|
|
|
|
///
|
|
/// \brief Run the prediction engine
|
|
///
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool ZeroCopyRun() override;
|
|
|
|
///
|
|
/// \brief Create feed fetch variables
|
|
///
|
|
/// \param[in] scope Scope needed to create variables
|
|
///
|
|
void CreateFeedFetchVar(framework::Scope *scope);
|
|
///
|
|
/// \brief Determine the model's inputs and outputs based on the program's
|
|
/// feed fetch op
|
|
///
|
|
void PrepareFeedFetch();
|
|
|
|
///
|
|
/// \brief Set predictor's argument according to config, which mainly includes
|
|
/// execution information and graph optimization related pass information
|
|
///
|
|
void PrepareArgument();
|
|
///
|
|
/// \brief According to argument information, execute the relevant pass
|
|
/// to get the optimized model program
|
|
///
|
|
void OptimizeInferenceProgram();
|
|
|
|
///
|
|
/// \brief Clear the intermediate tensors of the predictor
|
|
///
|
|
///
|
|
void ClearIntermediateTensor();
|
|
|
|
///
|
|
/// \brief Release all tmp tensor to compress the size of the memory pool.
|
|
/// The memory pool is considered to be composed of a list of chunks, if
|
|
/// the chunk is not occupied, it can be released.
|
|
///
|
|
/// \return Number of bytes released. It may be smaller than the actual
|
|
/// released memory, because part of the memory is not managed by the
|
|
/// MemoryPool.
|
|
///
|
|
uint64_t TryShrinkMemory() override;
|
|
|
|
///
|
|
/// \brief Get the argument used by predictor
|
|
///
|
|
/// \return the argument obtained by config
|
|
///
|
|
Argument &analysis_argument() { return argument_; }
|
|
///
|
|
/// \brief Clone to get the new predictor. thread safe.
|
|
///
|
|
/// \return get a new predictor
|
|
///
|
|
std::unique_ptr<PaddlePredictor> Clone() override;
|
|
///
|
|
/// \brief Get the scope used by predictor
|
|
///
|
|
/// \return scope
|
|
///
|
|
framework::Scope *scope() { return scope_.get(); }
|
|
///
|
|
/// \brief Get the inference program
|
|
///
|
|
/// \return the inference program
|
|
///
|
|
framework::ProgramDesc &program() { return *inference_program_; }
|
|
|
|
///
|
|
/// \brief Get the serialized program
|
|
///
|
|
/// \return the serialized program
|
|
///
|
|
std::string GetSerializedProgram() const override;
|
|
|
|
///
|
|
/// \brief Initialize mkldnn quantizer and execute mkldnn quantization pass
|
|
///
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool MkldnnQuantize();
|
|
|
|
///
|
|
/// \brief save program to model and save parameters to params
|
|
///
|
|
/// \param[in] dir path to save the model
|
|
///
|
|
void SaveOptimModel(const std::string &dir);
|
|
|
|
protected:
|
|
///
|
|
/// \brief Prepare predictor's required programs, including loading model
|
|
/// information, graph optimization, and executor creation variables, etc.
|
|
///
|
|
/// \param[in] program paddle program
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool PrepareProgram(const std::shared_ptr<framework::ProgramDesc> &program);
|
|
///
|
|
/// \brief Prepare scope environment, each predictor has its own scope
|
|
///
|
|
/// \param[in] parent_scope The scope of the predictor to be cloned, or null
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool PrepareScope(const std::shared_ptr<framework::Scope> &parent_scope);
|
|
///
|
|
/// \brief Create an Executor object
|
|
///
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool CreateExecutor();
|
|
///
|
|
/// \brief According to the model's program, the executor creates ops
|
|
///
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool PrepareExecutor();
|
|
|
|
///
|
|
/// \brief Load model program.
|
|
///
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool LoadProgramDesc();
|
|
///
|
|
/// \brief Load model parameters.
|
|
///
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool LoadParameters();
|
|
|
|
///
|
|
/// \brief Prepare input data, only used in Run()
|
|
///
|
|
/// \param[in] input_datas inpute tensors
|
|
/// \param[in] scope the scope used by predictor
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool SetFeed(const std::vector<PaddleTensor> &input_datas,
|
|
framework::Scope *scope);
|
|
///
|
|
/// \brief Get the output data, only used in Run()
|
|
///
|
|
/// \param[out] output_data output tensors
|
|
/// \param[in] scope the scope used by predictor
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool GetFetch(std::vector<PaddleTensor> *output_data,
|
|
framework::Scope *scope);
|
|
///
|
|
/// \brief Get the output data, only used in GetFetch()
|
|
///
|
|
/// \param[in] tensor for fetch op
|
|
/// \param[out] output_data output tensor
|
|
///
|
|
template <typename T>
|
|
void GetFetchOne(const framework::LoDTensor &fetchs,
|
|
PaddleTensor *output_data);
|
|
///
|
|
/// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
|
|
///
|
|
/// Used in AnalysisPredictor::Run(), do not support
|
|
/// AnalysisPredictor::ZeroCopyRun() now.
|
|
///
|
|
/// \param[in] inputs tensors
|
|
///
|
|
void MkldnnPreSet(const std::vector<PaddleTensor> &inputs);
|
|
|
|
///
|
|
/// \brief PreSet for Mkldnn multi-thread and dynamic shape input.
|
|
///
|
|
/// Used in AnalysisPredictor::Run(), do not support
|
|
/// AnalysisPredictor::ZeroCopyRun() now.
|
|
///
|
|
/// \param[in] inputs tensor shape
|
|
///
|
|
void MkldnnPreSet(const std::vector<std::vector<int>> &inputs_shape);
|
|
|
|
///
|
|
/// \brief PostReset for Mkldnn multi-thread and dynamic shape input.
|
|
///
|
|
/// Used in AnalysisPredictor::Run(), do not support
|
|
/// AnalysisPredictor::ZeroCopyRun() now.
|
|
///
|
|
void MkldnnPostReset();
|
|
|
|
#if PADDLE_WITH_TENSORRT
|
|
///
|
|
/// \brief save calibration table
|
|
///
|
|
/// When we use Paddle-TRT INT8 engine, we need to generate calibration table
|
|
/// data first,
|
|
/// the calibration table contains the range for each op's input and output,
|
|
/// this whole process can be divided into several steps:
|
|
/// 1. Builds a 32-bit engine, runs it on the calibration set, and records a
|
|
/// histogram for each tensor of the distribution of activation values.
|
|
/// 2. Builds a calibration table from the histograms.
|
|
/// After step 2, we need to store the calibration table on disk.
|
|
///
|
|
/// \return Whether the function executed successfully
|
|
///
|
|
bool SaveTrtCalibToDisk();
|
|
#endif
|
|
|
|
// Some more detailed tests, they are made the friends of the predictor, so that
|
|
// the all the details can be tested.
|
|
#if PADDLE_WITH_TESTING
|
|
FRIEND_TEST(AnalysisPredictor, analysis_off);
|
|
FRIEND_TEST(AnalysisPredictor, analysis_on);
|
|
FRIEND_TEST(AnalysisPredictor, with_gpu);
|
|
#endif
|
|
|
|
private:
|
|
AnalysisConfig config_;
|
|
Argument argument_;
|
|
std::unique_ptr<NaiveExecutor> executor_;
|
|
platform::Place place_;
|
|
std::shared_ptr<framework::Scope> scope_;
|
|
framework::Scope *sub_scope_{nullptr};
|
|
std::shared_ptr<framework::ProgramDesc> inference_program_;
|
|
framework::OpCompatibleMap op_compatible_map_;
|
|
std::vector<framework::OpDesc *> feeds_;
|
|
std::map<std::string, size_t> feed_names_;
|
|
// Sorted according to the idx.
|
|
std::map<size_t, std::string> idx2feeds_;
|
|
std::vector<framework::OpDesc *> fetches_;
|
|
std::map<size_t, std::string> idx2fetches_;
|
|
|
|
#if PADDLE_WITH_MKLDNN
|
|
// Helper class to perform quantization
|
|
class MkldnnQuantizer;
|
|
MkldnnQuantizer *mkldnn_quantizer_{nullptr};
|
|
|
|
#if PADDLE_WITH_TESTING
|
|
friend class MkldnnQuantizerTest;
|
|
#endif
|
|
#endif
|
|
|
|
// Memory buffer for feed inputs. The temporary LoDTensor will cause serious
|
|
// concurrency problems, wrong results and memory leak, so cache them.
|
|
std::vector<framework::LoDTensor> feed_tensors_;
|
|
details::TensorArrayBatchCleaner tensor_array_batch_cleaner_;
|
|
// A mutex help to make Clone thread safe.
|
|
std::mutex clone_mutex_;
|
|
|
|
// For memory optimization.
|
|
const size_t max_shape_collect_count_{1000};
|
|
int need_collect_var_shapes_{-1}; // -1 for default, 0 for false, 1 for true.
|
|
std::vector<std::map<std::string, std::vector<int>>> batch_var_shapes_;
|
|
int predictor_id_;
|
|
|
|
private:
|
|
// Some status here that help to determine the status inside the predictor.
|
|
bool status_is_cloned_{false};
|
|
};
|
|
|
|
} // namespace paddle
|