You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
200 lines
5.4 KiB
200 lines
5.4 KiB
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
///
|
|
/// \file paddle_mkldnn_quantizer_config.h
|
|
///
|
|
/// \brief Mkldnn quantizer config.
|
|
///
|
|
/// \author paddle-infer@baidu.com
|
|
/// \date 2020-01-01
|
|
/// \since 1.7.0
|
|
///
|
|
|
|
#pragma once
|
|
|
|
#include <cassert>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#include "paddle_api.h" // NOLINT
|
|
#include "paddle_infer_declare.h" // NOLINT
|
|
|
|
namespace paddle {
|
|
|
|
///
|
|
/// \brief Algorithms for finding scale of quantized Tensors.
|
|
///
|
|
enum class ScaleAlgo {
|
|
NONE, ///< Do not compute scale
|
|
MAX, ///< Find scale based on the max absolute value
|
|
MAX_CH, ///< Find scale based on the max absolute value per output channel
|
|
MAX_CH_T, ///< Find scale based on the max absolute value per output channel
|
|
///< of a transposed tensor
|
|
KL, ///< Find scale based on KL Divergence
|
|
};
|
|
|
|
///
|
|
/// \class MkldnnQuantizerConfig
|
|
///
|
|
/// \brief Config for mkldnn quantize.
|
|
///
|
|
/// The MkldnnQuantizerConfig is used to configure Mkldnn's quantization
|
|
/// parameters, including scale algorithm, warmup data, warmup batch size,
|
|
/// quantized op list, etc.
|
|
///
|
|
/// It is not recommended to use this config directly, please refer to
|
|
/// AnalysisConfig::mkldnn_quantizer_config()
|
|
///
|
|
struct PD_INFER_DECL MkldnnQuantizerConfig {
|
|
///
|
|
/// \brief Construct a new Mkldnn Quantizer Config object
|
|
///
|
|
MkldnnQuantizerConfig();
|
|
|
|
///
|
|
/// \brief Set the scale algo
|
|
///
|
|
/// Specify a quantization algorithm for a connection (input/output) of the
|
|
/// operator type.
|
|
/// \param[in] op_type_name the operator's name.
|
|
/// \param[in] conn_name name of the connection (input/output) of the
|
|
/// operator.
|
|
/// \param[in] algo the algorithm for computing scale.
|
|
///
|
|
void SetScaleAlgo(std::string op_type_name, std::string conn_name,
|
|
ScaleAlgo algo) {
|
|
rules_[op_type_name][conn_name] = algo;
|
|
}
|
|
|
|
///
|
|
/// \brief Get the scale algo
|
|
///
|
|
/// Get the quantization algorithm for a connection (input/output) of the
|
|
/// operator type.
|
|
///
|
|
/// \param[in] op_type_name the operator's name.
|
|
/// \param[in] conn_name name of the connection (input/output) of the
|
|
/// operator.
|
|
/// \return the scale algo.
|
|
///
|
|
ScaleAlgo scale_algo(const std::string& op_type_name,
|
|
const std::string& conn_name) const;
|
|
|
|
///
|
|
/// \brief Set the warmup data
|
|
///
|
|
/// Set the batch of data to be used for warm-up iteration.
|
|
///
|
|
/// \param[in] data batch of data.
|
|
///
|
|
void SetWarmupData(std::shared_ptr<std::vector<PaddleTensor>> data) {
|
|
warmup_data_ = data;
|
|
}
|
|
|
|
///
|
|
/// \brief Get the warmup data
|
|
///
|
|
/// Get the batch of data used for warm-up iteration.
|
|
///
|
|
/// \return the warm up data
|
|
///
|
|
std::shared_ptr<std::vector<PaddleTensor>> warmup_data() const {
|
|
return warmup_data_;
|
|
}
|
|
|
|
///
|
|
/// \brief Set the warmup batch size
|
|
///
|
|
/// Set the batch size for warm-up iteration.
|
|
///
|
|
/// \param[in] batch_size warm-up batch size
|
|
///
|
|
void SetWarmupBatchSize(int batch_size) { warmup_bs_ = batch_size; }
|
|
|
|
///
|
|
/// \brief Get the warmup batch size
|
|
///
|
|
/// Get the batch size for warm-up iteration.
|
|
///
|
|
/// \return the warm up batch size
|
|
int warmup_batch_size() const { return warmup_bs_; }
|
|
|
|
///
|
|
/// \brief Set quantized op list
|
|
///
|
|
/// In the quantization process, set the op list that supports quantization
|
|
///
|
|
/// \param[in] op_list List of quantized ops
|
|
///
|
|
void SetEnabledOpTypes(std::unordered_set<std::string> op_list) {
|
|
enabled_op_types_ = op_list;
|
|
}
|
|
|
|
///
|
|
/// \brief Get quantized op list
|
|
///
|
|
/// \return list of quantized ops
|
|
///
|
|
const std::unordered_set<std::string>& enabled_op_types() const {
|
|
return enabled_op_types_;
|
|
}
|
|
|
|
///
|
|
/// \brief Set the excluded op ids
|
|
///
|
|
/// \param[in] op_ids_list excluded op ids
|
|
///
|
|
void SetExcludedOpIds(std::unordered_set<int> op_ids_list) {
|
|
excluded_op_ids_ = op_ids_list;
|
|
}
|
|
|
|
///
|
|
/// \brief Get the excluded op ids
|
|
///
|
|
/// \return exclude op ids
|
|
///
|
|
const std::unordered_set<int>& excluded_op_ids() const {
|
|
return excluded_op_ids_;
|
|
}
|
|
|
|
///
|
|
/// \brief Set default scale algorithm
|
|
///
|
|
/// \param[in] algo Method for calculating scale in quantization process
|
|
///
|
|
void SetDefaultScaleAlgo(ScaleAlgo algo) { default_scale_algo_ = algo; }
|
|
|
|
///
|
|
/// \brief Get default scale algorithm
|
|
///
|
|
/// \return Method for calculating scale in quantization
|
|
/// process
|
|
///
|
|
ScaleAlgo default_scale_algo() const { return default_scale_algo_; }
|
|
|
|
protected:
|
|
std::map<std::string, std::map<std::string, ScaleAlgo>> rules_;
|
|
std::unordered_set<std::string> enabled_op_types_;
|
|
std::unordered_set<int> excluded_op_ids_;
|
|
std::shared_ptr<std::vector<PaddleTensor>> warmup_data_;
|
|
int warmup_bs_{1};
|
|
ScaleAlgo default_scale_algo_{ScaleAlgo::MAX};
|
|
};
|
|
|
|
} // namespace paddle
|