You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/paddle_pass_builder.h

249 lines
7.8 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <sstream>
#include <string>
#include <vector>
#include "paddle_infer_declare.h" // NOLINT
///
/// \file paddle_pass_builder.h
///
/// \brief Class Paddle Passs Builder and its subclasses(pass strategies).
/// \section sec_intro Introduction
/// This class aims to build passes for paddle and define passes' strategies.
///
/// \author paddle-infer@baidu.com
/// \date 2020-3-23
/// \since 1.7
/// \namespace paddle
namespace paddle {
/// \class PaddlePassBuilder
/// \brief This class build passes based on vector<string> input. It is part of
/// inference API. Users can build passes, insert new passes, delete passes
/// using this class and its functions.
///
/// Example Usage:
/// Build a new pass.
/// \code{cpp}
/// const vector<string> passes(1, "conv_relu_mkldnn_fuse_pass");
/// PaddlePassBuilder builder(passes);
/// \endcode
class PD_INFER_DECL PaddlePassBuilder {
public:
/// \brief Constructor of the class. It stores the input passes.
/// \param[in] passes passes' types.
explicit PaddlePassBuilder(const std::vector<std::string> &passes)
: passes_(passes) {}
/// \brief Stores the input passes.
/// \param[in] passes passes' types.
void SetPasses(std::initializer_list<std::string> passes) {
passes_ = passes;
}
/// \brief Append a pass to the end of the passes.
/// \param[in] pass_type the type of the new pass.
void AppendPass(const std::string &pass_type);
/// \brief Insert a pass to a specific position.
/// \param[in] idx the position to insert.
/// \param[in] pass_type the type of insert pass.
void InsertPass(size_t idx, const std::string &pass_type);
/// \brief Delete the pass at certain position 'idx'.
/// \param[in] idx the position to delete.
void DeletePass(size_t idx);
/// \brief Delete all passes that has a certain type 'pass_type'.
/// \param[in] pass_type the certain pass type to be deleted.
void DeletePass(const std::string &pass_type);
/// \brief Delete all the passes.
void ClearPasses();
/// \brief Append an analysis pass.
/// \param[in] pass the type of the new analysis pass.
void AppendAnalysisPass(const std::string &pass);
/// \brief Visualize the computation graph after each pass by generating a DOT
/// language file, one can draw them with the Graphviz toolkit.
void TurnOnDebug();
/// \brief Human-readable information of the passes.
std::string DebugString();
/// \brief Get information of passes.
/// \return Return list of the passes.
const std::vector<std::string> &AllPasses() const { return passes_; }
/// \brief Get information of analysis passes.
/// \return Return list of analysis passes.
std::vector<std::string> AnalysisPasses() const {
auto passes = analysis_passes_;
// To make sure the ir_graph_to_program should be the last pass so any
// modication of IR will persist to the program.
passes.push_back("ir_graph_to_program_pass");
return passes;
}
protected:
/// \cond Protected
std::vector<std::string> analysis_passes_{
{"ir_graph_build_pass", "ir_graph_clean_pass", "ir_analysis_pass",
"ir_params_sync_among_devices_pass", "adjust_cudnn_workspace_size_pass",
"inference_op_replace_pass"}};
std::vector<std::string> passes_;
/// \endcond
};
/// \class PassStrategy
/// \brief This class defines the pass strategies like whether to use gpu/cuDNN
/// kernel/MKLDNN.
class PD_INFER_DECL PassStrategy : public PaddlePassBuilder {
public:
/// \brief Constructor of PassStrategy class. It works the same as
/// PaddlePassBuilder class. \param[in] passes passes' types.
explicit PassStrategy(const std::vector<std::string> &passes)
: PaddlePassBuilder(passes) {}
/// \brief Enable the use of cuDNN kernel.
virtual void EnableCUDNN() {}
/// \brief Enable the use of MKLDNN.
/// The MKLDNN control exists in both CPU and GPU mode, because there can
/// still be some CPU kernels running in GPU mode.
virtual void EnableMKLDNN() {}
/// \brief Enable MKLDNN quantize optimization.
virtual void EnableMkldnnQuantizer() {}
/// \brief Enable MKLDNN bfloat16.
virtual void EnableMkldnnBfloat16() {}
/// \brief Check if we are using gpu.
/// \return A bool variable implying whether we are in gpu mode.
bool use_gpu() const { return use_gpu_; }
/// \brief Check if we are using xpu.
/// \return A bool variable implying whether we are in xpu mode.
bool use_xpu() const { return use_xpu_; }
/// \brief Default destructor.
virtual ~PassStrategy() = default;
protected:
/// \cond Protected
bool use_xpu_{false};
bool use_gpu_{false};
bool use_mkldnn_{false};
/// \endcond
};
/// \class CpuPassStrategy
/// \brief The CPU passes controller, it is used in AnalysisPredictor with CPU
/// mode.
class PD_INFER_DECL CpuPassStrategy : public PassStrategy {
public:
/// \brief Default constructor of CpuPassStrategy.
CpuPassStrategy();
/// \brief Construct by copying another CpuPassStrategy object.
/// \param[in] other The CpuPassStrategy object we want to copy.
explicit CpuPassStrategy(const CpuPassStrategy &other)
: PassStrategy(other.AllPasses()) {
use_gpu_ = other.use_gpu_;
use_mkldnn_ = other.use_mkldnn_;
use_mkldnn_quantizer_ = other.use_mkldnn_quantizer_;
use_mkldnn_bfloat16_ = other.use_mkldnn_bfloat16_;
}
/// \brief Default destructor.
virtual ~CpuPassStrategy() = default;
/// \brief Enable the use of cuDNN kernel.
void EnableCUDNN() override;
/// \brief Enable the use of MKLDNN.
void EnableMKLDNN() override;
/// \brief Enable MKLDNN quantize optimization.
void EnableMkldnnQuantizer() override;
/// \brief Enable MKLDNN bfloat16.
void EnableMkldnnBfloat16() override;
protected:
/// \cond Protected
bool use_mkldnn_quantizer_{false};
bool use_mkldnn_bfloat16_{false};
/// \endcond
};
/// \class GpuPassStrategy
/// \brief The GPU passes controller, it is used in AnalysisPredictor with GPU
/// mode.
class PD_INFER_DECL GpuPassStrategy : public PassStrategy {
public:
/// \brief Default constructor of GpuPassStrategy.
GpuPassStrategy();
/// \brief Construct by copying another GpuPassStrategy object.
/// \param[in] other The GpuPassStrategy object we want to copy.
explicit GpuPassStrategy(const GpuPassStrategy &other)
: PassStrategy(other.AllPasses()) {
use_gpu_ = true;
use_cudnn_ = other.use_cudnn_;
}
/// \brief Enable the use of cuDNN kernel.
void EnableCUDNN() override;
/// \brief Not supported in GPU mode yet.
void EnableMKLDNN() override;
/// \brief Not supported in GPU mode yet.
void EnableMkldnnQuantizer() override;
/// \brief Not supported in GPU mode yet.
void EnableMkldnnBfloat16() override;
/// \brief Default destructor.
virtual ~GpuPassStrategy() = default;
protected:
/// \cond Protected
bool use_cudnn_{false};
/// \endcond
};
/// \class XpuPassStrategy
/// \brief The XPU passes controller, it is used in AnalysisPredictor with XPU
/// mode.
class PD_INFER_DECL XpuPassStrategy final : public PassStrategy {
public:
XpuPassStrategy() : PassStrategy({}) {}
};
/// \brief List of tensorRT subgraph passes.
PD_INFER_DECL extern const std::vector<std::string> kTRTSubgraphPasses;
/// \brief List of lite subgraph passes.
PD_INFER_DECL extern const std::vector<std::string> kLiteSubgraphPasses;
} // namespace paddle