You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
3.8 KiB
112 lines
3.8 KiB
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include "paddle_infer_declare.h" // NOLINT
|
|
|
|
namespace paddle_infer {
|
|
|
|
/// \brief Paddle data type.
|
|
enum DataType {
|
|
FLOAT32,
|
|
INT64,
|
|
INT32,
|
|
UINT8,
|
|
INT8,
|
|
// TODO(Superjomn) support more data types if needed.
|
|
};
|
|
|
|
enum class PlaceType { kUNK = -1, kCPU, kGPU, kXPU };
|
|
|
|
/// \brief Represents an n-dimensional array of values.
|
|
/// The Tensor is used to store the input or output of the network.
|
|
/// Zero copy means that the tensor supports direct copy of host or device data
|
|
/// to device,
|
|
/// eliminating additional CPU copy. Tensor is only used in the
|
|
/// AnalysisPredictor.
|
|
/// It is obtained through PaddlePredictor::GetinputTensor()
|
|
/// and PaddlePredictor::GetOutputTensor() interface.
|
|
class PD_INFER_DECL Tensor {
|
|
public:
|
|
/// \brief Reset the shape of the tensor.
|
|
/// Generally it's only used for the input tensor.
|
|
/// Reshape must be called before calling mutable_data() or copy_from_cpu()
|
|
/// \param shape The shape to set.
|
|
void Reshape(const std::vector<int>& shape);
|
|
|
|
/// \brief Get the memory pointer in CPU or GPU with specific data type.
|
|
/// Please Reshape the tensor first before call this.
|
|
/// It's usually used to get input data pointer.
|
|
/// \param place The place of the tensor.
|
|
template <typename T>
|
|
T* mutable_data(PlaceType place);
|
|
|
|
/// \brief Get the memory pointer directly.
|
|
/// It's usually used to get the output data pointer.
|
|
/// \param[out] place To get the device type of the tensor.
|
|
/// \param[out] size To get the data size of the tensor.
|
|
/// \return The tensor data buffer pointer.
|
|
template <typename T>
|
|
T* data(PlaceType* place, int* size) const;
|
|
|
|
/// \brief Copy the host memory to tensor data.
|
|
/// It's usually used to set the input tensor data.
|
|
/// \param data The pointer of the data, from which the tensor will copy.
|
|
template <typename T>
|
|
void CopyFromCpu(const T* data);
|
|
|
|
/// \brief Copy the tensor data to the host memory.
|
|
/// It's usually used to get the output tensor data.
|
|
/// \param[out] data The tensor will copy the data to the address.
|
|
template <typename T>
|
|
void CopyToCpu(T* data);
|
|
|
|
/// \brief Return the shape of the Tensor.
|
|
std::vector<int> shape() const;
|
|
|
|
/// \brief Set lod info of the tensor.
|
|
/// More about LOD can be seen here:
|
|
/// https://www.paddlepaddle.org.cn/documentation/docs/zh/beginners_guide/basic_concept/lod_tensor.html#lodtensor
|
|
/// \param x the lod info.
|
|
void SetLoD(const std::vector<std::vector<size_t>>& x);
|
|
/// \brief Return the lod info of the tensor.
|
|
std::vector<std::vector<size_t>> lod() const;
|
|
/// \brief Return the name of the tensor.
|
|
const std::string& name() const;
|
|
|
|
/// \brief Return the data type of the tensor.
|
|
/// It's usually used to get the output tensor data type.
|
|
/// \return The data type of the tensor.
|
|
DataType type() const;
|
|
|
|
protected:
|
|
explicit Tensor(void* scope);
|
|
void* FindTensor() const;
|
|
void SetPlace(PlaceType place, int device = -1);
|
|
void SetName(const std::string& name);
|
|
|
|
std::string name_;
|
|
// The corresponding tensor pointer inside Paddle workspace is cached for
|
|
// performance.
|
|
mutable void* tensor_{nullptr};
|
|
DataType dtype_;
|
|
bool input_or_output_;
|
|
void* scope_{nullptr};
|
|
PlaceType place_;
|
|
int device_;
|
|
};
|
|
|
|
} // namespace paddle_infer
|