You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
260 lines
7.2 KiB
260 lines
7.2 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/framework/transfer_scope_cache.h"
|
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
|
|
|
namespace paddle {
|
|
namespace inference {
|
|
|
|
using paddle::PaddleTensor;
|
|
|
|
template <typename T>
|
|
void GetValueFromStream(std::stringstream *ss, T *t) {
|
|
(*ss) >> (*t);
|
|
}
|
|
|
|
template <>
|
|
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
|
|
*t = ss->str();
|
|
}
|
|
|
|
// Split string to vector
|
|
template <typename T>
|
|
void Split(const std::string &line, char sep, std::vector<T> *v) {
|
|
std::stringstream ss;
|
|
T t;
|
|
for (auto c : line) {
|
|
if (c != sep) {
|
|
ss << c;
|
|
} else {
|
|
GetValueFromStream<T>(&ss, &t);
|
|
v->push_back(std::move(t));
|
|
ss.str({});
|
|
ss.clear();
|
|
}
|
|
}
|
|
|
|
if (!ss.str().empty()) {
|
|
GetValueFromStream<T>(&ss, &t);
|
|
v->push_back(std::move(t));
|
|
ss.str({});
|
|
ss.clear();
|
|
}
|
|
}
|
|
|
|
// Parse tensor from string
|
|
template <typename T>
|
|
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
|
|
std::vector<std::string> data;
|
|
Split(field, ':', &data);
|
|
if (data.size() < 2) return false;
|
|
|
|
std::string shape_str = data[0];
|
|
|
|
std::vector<int> shape;
|
|
Split(shape_str, ' ', &shape);
|
|
|
|
std::string mat_str = data[1];
|
|
|
|
std::vector<T> mat;
|
|
Split(mat_str, ' ', &mat);
|
|
|
|
tensor->shape = shape;
|
|
auto size =
|
|
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
|
|
sizeof(T);
|
|
tensor->data.Resize(size);
|
|
std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
|
|
tensor->dtype = GetPaddleDType<T>();
|
|
|
|
return true;
|
|
}
|
|
|
|
// Parse input tensors from string
|
|
bool ParseLine(const std::string &line,
|
|
std::vector<paddle::PaddleTensor> *tensors) {
|
|
std::vector<std::string> fields;
|
|
Split(line, ';', &fields);
|
|
|
|
if (fields.size() < 5) return false;
|
|
|
|
tensors->clear();
|
|
tensors->reserve(5);
|
|
|
|
int i = 0;
|
|
// src_id
|
|
paddle::PaddleTensor src_id;
|
|
ParseTensor<int64_t>(fields[i++], &src_id);
|
|
tensors->push_back(src_id);
|
|
|
|
// pos_id
|
|
paddle::PaddleTensor pos_id;
|
|
ParseTensor<int64_t>(fields[i++], &pos_id);
|
|
tensors->push_back(pos_id);
|
|
|
|
// segment_id
|
|
paddle::PaddleTensor segment_id;
|
|
ParseTensor<int64_t>(fields[i++], &segment_id);
|
|
tensors->push_back(segment_id);
|
|
|
|
// self_attention_bias
|
|
paddle::PaddleTensor self_attention_bias;
|
|
ParseTensor<float>(fields[i++], &self_attention_bias);
|
|
tensors->push_back(self_attention_bias);
|
|
|
|
// next_segment_index
|
|
paddle::PaddleTensor next_segment_index;
|
|
ParseTensor<int64_t>(fields[i++], &next_segment_index);
|
|
tensors->push_back(next_segment_index);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
|
|
if (FLAGS_infer_data.empty()) {
|
|
LOG(ERROR) << "please set input data path";
|
|
return false;
|
|
}
|
|
|
|
std::ifstream fin(FLAGS_infer_data);
|
|
std::string line;
|
|
int sample = 0;
|
|
|
|
// The unit-test dataset only have 10 samples, each sample have 5 feeds.
|
|
while (std::getline(fin, line)) {
|
|
std::vector<paddle::PaddleTensor> feed_data;
|
|
ParseLine(line, &feed_data);
|
|
inputs->push_back(std::move(feed_data));
|
|
sample++;
|
|
if (!FLAGS_test_all_data && sample == FLAGS_batch_size) break;
|
|
}
|
|
LOG(INFO) << "number of samples: " << sample;
|
|
|
|
return true;
|
|
}
|
|
|
|
void SetConfig(AnalysisConfig *config) {
|
|
config->SetModel(FLAGS_infer_model);
|
|
config->DisableFCPadding();
|
|
}
|
|
|
|
void profile(bool use_mkldnn = false) {
|
|
AnalysisConfig config;
|
|
SetConfig(&config);
|
|
|
|
if (use_mkldnn) {
|
|
config.EnableMKLDNN();
|
|
}
|
|
|
|
std::vector<std::vector<PaddleTensor>> outputs;
|
|
std::vector<std::vector<PaddleTensor>> inputs;
|
|
LoadInputData(&inputs);
|
|
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&config),
|
|
inputs, &outputs, FLAGS_num_threads);
|
|
}
|
|
|
|
TEST(Analyzer_bert, profile) { profile(); }
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
TEST(Analyzer_bert, profile_mkldnn) { profile(true); }
|
|
#endif
|
|
|
|
// Check the fuse status
|
|
TEST(Analyzer_bert, fuse_statis) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
int num_ops;
|
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
|
auto fuse_statis = GetFuseStatis(
|
|
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
|
|
LOG(INFO) << "num_ops: " << num_ops;
|
|
}
|
|
|
|
// Compare result of NativeConfig and AnalysisConfig
|
|
void compare(bool use_mkldnn = false) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
if (use_mkldnn) {
|
|
cfg.EnableMKLDNN();
|
|
}
|
|
|
|
std::vector<std::vector<PaddleTensor>> inputs;
|
|
LoadInputData(&inputs);
|
|
CompareNativeAndAnalysis(
|
|
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), inputs);
|
|
}
|
|
|
|
TEST(Analyzer_bert, compare) { compare(); }
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
TEST(Analyzer_bert, compare_mkldnn) { compare(true /* use_mkldnn */); }
|
|
#endif
|
|
|
|
// Compare Deterministic result
|
|
TEST(Analyzer_bert, compare_determine) {
|
|
AnalysisConfig cfg;
|
|
SetConfig(&cfg);
|
|
|
|
std::vector<std::vector<PaddleTensor>> inputs;
|
|
LoadInputData(&inputs);
|
|
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
|
|
inputs);
|
|
}
|
|
|
|
TEST(Analyzer_bert, transfer_scope_cache) {
|
|
AnalysisConfig config;
|
|
SetConfig(&config);
|
|
|
|
std::vector<PaddleTensor> input, output;
|
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
|
|
|
|
int threads_num = 10;
|
|
std::vector<std::thread> threads;
|
|
std::unordered_set<std::unordered_set<paddle::framework::Scope *> *>
|
|
global_transfer_scope_cache;
|
|
std::unordered_set<std::unordered_map<size_t, paddle::framework::Scope *> *>
|
|
global_transfer_data_cache;
|
|
|
|
std::ifstream fin(FLAGS_infer_data);
|
|
std::string line;
|
|
|
|
for (int i = 0; i < threads_num; i++) {
|
|
threads.emplace_back([&, i]() {
|
|
std::getline(fin, line);
|
|
ParseLine(line, &input);
|
|
predictor->Run(input, &output, FLAGS_batch_size);
|
|
global_transfer_scope_cache.insert(
|
|
&paddle::framework::global_transfer_scope_cache());
|
|
global_transfer_data_cache.insert(
|
|
&paddle::framework::global_transfer_data_cache());
|
|
});
|
|
threads[0].join();
|
|
threads.clear();
|
|
std::vector<PaddleTensor>().swap(input);
|
|
}
|
|
// Since paddle::framework::global_transfer_scope_cache() and
|
|
// paddle::framework::global_transfer_data_cache() are thread_local,
|
|
// their pointer should be different among different thread id.
|
|
PADDLE_ENFORCE_EQ(
|
|
global_transfer_scope_cache.size(), threads_num,
|
|
paddle::platform::errors::Fatal(
|
|
"The size of scope cache is not equal to thread number."));
|
|
PADDLE_ENFORCE_EQ(
|
|
global_transfer_data_cache.size(), threads_num,
|
|
paddle::platform::errors::Fatal(
|
|
"The size of data cache is not equal to thread number."));
|
|
}
|
|
|
|
} // namespace inference
|
|
} // namespace paddle
|