You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/abs_op.cc

193 lines
6.9 KiB

// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/abs_op.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
class AbsOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "abs");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "abs");
auto in_dims = ctx->GetInputDim("X");
ctx->SetOutputDim("Out", in_dims);
ctx->ShareLoD("X", /*->*/ "Out");
}
};
class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor), The input tensor of abs op.");
AddOutput("Out", "(Tensor), The output tensor of abs op.");
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<bool>("use_cudnn",
"(bool, default false) Only used in cudnn kernel, need "
"install cudnn")
.SetDefault(false);
AddComment(R"DOC(
Abs Operator.
This operator is used to perform elementwise abs for input $X$.
$$out = |x|$$
)DOC");
}
};
class AbsGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
"Out@Grad", "AbsGrad");
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
"X@Grad", "AbsGrad");
auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
ctx->SetOutputDim(framework::GradVarName("X"), dout_dims);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(dtype, ctx.GetPlace());
}
};
template <typename T>
class AbsGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> retv) const override {
retv->SetType("abs_grad");
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
retv->SetInput("X", this->Input("X"));
retv->SetAttrMap(this->Attrs());
retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
// AbsGrad: dx=dy if x >=0 else -dy
// AbsDoubleGrad: ddy = ddx if x >=0 else -ddx
template <typename T>
class AbsDoubleGradMaker : public framework::SingleGradOpMaker<T> {
public:
using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("abs_grad_grad");
// input1: x
op->SetInput("X", this->Input("X"));
// input2: ddx
op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
op->SetAttrMap(this->Attrs());
// output: ddy
op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
}
};
class AbsDoubleGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
if (ctx->HasOutput("DDOut")) {
ctx->ShareDim("X", "DDOut");
ctx->ShareLoD("X", "DDOut");
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
return framework::OpKernelType(dtype, ctx.GetPlace());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string& var_name, const framework::Tensor& tensor,
const framework::OpKernelType& expected_kernel_type) const {
return framework::OpKernelType(tensor.type(), tensor.place(),
tensor.layout());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(abs, ops::AbsOp, ops::AbsOpMaker,
ops::AbsGradMaker<paddle::framework::OpDesc>,
ops::AbsGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(abs_grad, ops::AbsGradOp,
ops::AbsDoubleGradMaker<paddle::framework::OpDesc>,
ops::AbsDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(abs_grad_grad, ops::AbsDoubleGradOp);
REGISTER_OP_CPU_KERNEL(
abs, ops::AbsKernel<paddle::platform::CPUDeviceContext, float>,
ops::AbsKernel<paddle::platform::CPUDeviceContext, double>,
ops::AbsKernel<paddle::platform::CPUDeviceContext, int>,
ops::AbsKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::AbsKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::AbsKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>);
REGISTER_OP_CPU_KERNEL(
abs_grad, ops::AbsGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::AbsGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::AbsGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::AbsGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::AbsGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::AbsGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>);
REGISTER_OP_CPU_KERNEL(
abs_grad_grad,
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::float16>,
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex64>,
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
paddle::platform::complex128>);