You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
6.9 KiB
193 lines
6.9 KiB
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/abs_op.h"
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
|
#endif
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class AbsOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "abs");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "abs");
|
|
|
|
auto in_dims = ctx->GetInputDim("X");
|
|
|
|
ctx->SetOutputDim("Out", in_dims);
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
};
|
|
|
|
class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor), The input tensor of abs op.");
|
|
AddOutput("Out", "(Tensor), The output tensor of abs op.");
|
|
AddAttr<bool>("use_mkldnn",
|
|
"(bool, default false) Only used in mkldnn kernel")
|
|
.SetDefault(false);
|
|
AddAttr<bool>("use_cudnn",
|
|
"(bool, default false) Only used in cudnn kernel, need "
|
|
"install cudnn")
|
|
.SetDefault(false);
|
|
AddComment(R"DOC(
|
|
Abs Operator.
|
|
|
|
This operator is used to perform elementwise abs for input $X$.
|
|
$$out = |x|$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class AbsGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
"Out@Grad", "AbsGrad");
|
|
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
|
|
"X@Grad", "AbsGrad");
|
|
|
|
auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
ctx->SetOutputDim(framework::GradVarName("X"), dout_dims);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X");
|
|
return framework::OpKernelType(dtype, ctx.GetPlace());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class AbsGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
void Apply(GradOpPtr<T> retv) const override {
|
|
retv->SetType("abs_grad");
|
|
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
retv->SetInput("X", this->Input("X"));
|
|
retv->SetAttrMap(this->Attrs());
|
|
retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
}
|
|
};
|
|
|
|
// AbsGrad: dx=dy if x >=0 else -dy
|
|
// AbsDoubleGrad: ddy = ddx if x >=0 else -ddx
|
|
template <typename T>
|
|
class AbsDoubleGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("abs_grad_grad");
|
|
// input1: x
|
|
op->SetInput("X", this->Input("X"));
|
|
// input2: ddx
|
|
op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
|
|
op->SetAttrMap(this->Attrs());
|
|
// output: ddy
|
|
op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
|
|
}
|
|
};
|
|
|
|
class AbsDoubleGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
if (ctx->HasOutput("DDOut")) {
|
|
ctx->ShareDim("X", "DDOut");
|
|
ctx->ShareLoD("X", "DDOut");
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
|
|
return framework::OpKernelType(dtype, ctx.GetPlace());
|
|
}
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string& var_name, const framework::Tensor& tensor,
|
|
const framework::OpKernelType& expected_kernel_type) const {
|
|
return framework::OpKernelType(tensor.type(), tensor.place(),
|
|
tensor.layout());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(abs, ops::AbsOp, ops::AbsOpMaker,
|
|
ops::AbsGradMaker<paddle::framework::OpDesc>,
|
|
ops::AbsGradMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(abs_grad, ops::AbsGradOp,
|
|
ops::AbsDoubleGradMaker<paddle::framework::OpDesc>,
|
|
ops::AbsDoubleGradMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(abs_grad_grad, ops::AbsDoubleGradOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
abs, ops::AbsKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::AbsKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::AbsKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::AbsKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::AbsKernel<paddle::platform::CPUDeviceContext,
|
|
paddle::platform::complex64>,
|
|
ops::AbsKernel<paddle::platform::CPUDeviceContext,
|
|
paddle::platform::complex128>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
abs_grad, ops::AbsGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::AbsGradKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::AbsGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::AbsGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::AbsGradKernel<paddle::platform::CPUDeviceContext,
|
|
paddle::platform::complex64>,
|
|
ops::AbsGradKernel<paddle::platform::CPUDeviceContext,
|
|
paddle::platform::complex128>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
abs_grad_grad,
|
|
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
|
|
paddle::platform::float16>,
|
|
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
|
|
paddle::platform::complex64>,
|
|
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
|
|
paddle::platform::complex128>);
|