You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
187 lines
6.7 KiB
187 lines
6.7 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
Indicesou may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/data_layout.h"
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class AffineChannelXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* x = ctx.Input<framework::Tensor>("X");
|
|
auto* scale = ctx.Input<framework::Tensor>("Scale");
|
|
auto* bias = ctx.Input<framework::Tensor>("Bias");
|
|
|
|
auto* y = ctx.Output<framework::Tensor>("Out");
|
|
y->mutable_data<T>(ctx.GetPlace());
|
|
|
|
const framework::DataLayout layout =
|
|
framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));
|
|
|
|
auto dims = x->dims();
|
|
int N = dims[0];
|
|
int C = layout == framework::DataLayout::kNCHW ? dims[1]
|
|
: dims[dims.size() - 1];
|
|
int HxW = x->numel() / N / C;
|
|
|
|
auto* scale_d = scale->data<T>();
|
|
auto* bias_d = bias->data<T>();
|
|
|
|
auto* x_d = x->data<T>();
|
|
auto* y_d = y->data<T>();
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
std::vector<int> x_shape;
|
|
std::vector<int> b_shape;
|
|
if (layout == framework::DataLayout::kNCHW) {
|
|
x_shape.push_back(N);
|
|
x_shape.push_back(C);
|
|
x_shape.push_back(HxW);
|
|
b_shape.push_back(1);
|
|
b_shape.push_back(C);
|
|
b_shape.push_back(1);
|
|
} else {
|
|
x_shape.push_back(N * HxW);
|
|
x_shape.push_back(C);
|
|
b_shape.push_back(1);
|
|
b_shape.push_back(C);
|
|
}
|
|
int r = 0;
|
|
r = xpu::broadcast_mul(dev_ctx.x_context(), x_d, scale_d, y_d, x_shape,
|
|
b_shape);
|
|
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"The broadcast_mul XPU OP return wrong value[%d %s]",
|
|
r, XPUAPIErrorMsg[r]));
|
|
r = xpu::broadcast_add(dev_ctx.x_context(), y_d, bias_d, y_d, x_shape,
|
|
b_shape);
|
|
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"The broadcast_add XPU OP return wrong value[%d %s]",
|
|
r, XPUAPIErrorMsg[r]));
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class AffineChannelGradXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* x = ctx.Input<framework::Tensor>("X");
|
|
auto* scale = ctx.Input<framework::Tensor>("Scale");
|
|
auto* dy = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
|
|
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
auto* dscale =
|
|
ctx.Output<framework::Tensor>(framework::GradVarName("Scale"));
|
|
auto* dbias = ctx.Output<framework::Tensor>(framework::GradVarName("Bias"));
|
|
|
|
const framework::DataLayout layout =
|
|
framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));
|
|
|
|
auto dims = x->dims();
|
|
int N = dims[0];
|
|
int C = layout == framework::DataLayout::kNCHW ? dims[1]
|
|
: dims[dims.size() - 1];
|
|
int HxW = x->numel() / N / C;
|
|
|
|
auto* dy_d = dy->data<T>();
|
|
auto* scale_d = scale->data<T>();
|
|
|
|
T* dx_d = dx ? dx->mutable_data<T>(ctx.GetPlace()) : nullptr;
|
|
T* dscale_d = dscale ? dscale->mutable_data<T>(ctx.GetPlace()) : nullptr;
|
|
T* dbias_d = dbias ? dbias->mutable_data<T>(ctx.GetPlace()) : nullptr;
|
|
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
std::vector<int> x_shape;
|
|
std::vector<int> b_shape;
|
|
std::vector<int> rdims;
|
|
if (layout == framework::DataLayout::kNCHW) {
|
|
x_shape.push_back(N);
|
|
x_shape.push_back(C);
|
|
x_shape.push_back(HxW);
|
|
b_shape.push_back(1);
|
|
b_shape.push_back(C);
|
|
b_shape.push_back(1);
|
|
rdims.push_back(0);
|
|
rdims.push_back(2);
|
|
} else {
|
|
x_shape.push_back(N * HxW);
|
|
x_shape.push_back(C);
|
|
b_shape.push_back(1);
|
|
b_shape.push_back(C);
|
|
rdims.push_back(0);
|
|
}
|
|
|
|
int r = 0;
|
|
if (dscale_d && dbias_d) {
|
|
r = xpu::reduce_sum<T>(dev_ctx.x_context(), dy_d, dbias_d, x_shape,
|
|
rdims);
|
|
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"The reduce_sum XPU OP return wrong value[%d %s]",
|
|
r, XPUAPIErrorMsg[r]));
|
|
T* tmp = nullptr;
|
|
r = xpu_malloc(reinterpret_cast<void**>(&tmp), dy->numel() * sizeof(T));
|
|
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External("no enough memory in xpu"));
|
|
|
|
r = xpu::mul<T>(dev_ctx.x_context(), dy_d, x->data<T>(), tmp,
|
|
dy->numel());
|
|
PADDLE_ENFORCE_EQ(
|
|
r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External("The mul XPU OP return wrong value[%d %s]",
|
|
r, XPUAPIErrorMsg[r]));
|
|
r = xpu::reduce_sum<T>(dev_ctx.x_context(), tmp, dscale_d, x_shape,
|
|
rdims);
|
|
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"The reduce_sum XPU OP return wrong value[%d %s]",
|
|
r, XPUAPIErrorMsg[r]));
|
|
if (dev_ctx.x_context()->xpu_stream) {
|
|
dev_ctx.Wait();
|
|
}
|
|
xpu_free(tmp);
|
|
}
|
|
if (dx_d) {
|
|
r = xpu::broadcast_mul(dev_ctx.x_context(), dy_d, scale_d, dx_d, x_shape,
|
|
b_shape);
|
|
PADDLE_ENFORCE_EQ(
|
|
r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"The broadcast_mul XPU OP return wrong value[%d %s]", r,
|
|
XPUAPIErrorMsg[r]));
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
using XPU = paddle::platform::XPUDeviceContext;
|
|
|
|
REGISTER_OP_XPU_KERNEL(affine_channel, ops::AffineChannelXPUKernel<XPU, float>);
|
|
REGISTER_OP_XPU_KERNEL(affine_channel_grad,
|
|
ops::AffineChannelGradXPUKernel<XPU, float>);
|
|
|
|
#endif
|