You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/dropout_op_xpu.cc

150 lines
6.4 KiB

/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dropout_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/platform/xpu_header.h"
namespace paddle {
namespace operators {
#ifdef PADDLE_WITH_XPU
static std::map<int, float*> mask_data_tables;
static const int max_data_size = 32 * 1024 * 1024;
static std::mutex s_mask_data_table_lock;
template <typename DeviceContext, typename T>
class DropoutXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* y = context.Output<Tensor>("Out");
const auto* x_data = x->data<T>();
auto* y_data = y->mutable_data<T>(context.GetPlace());
float dropout_prob = context.Attr<float>("dropout_prob");
auto dropout_implementation =
context.Attr<std::string>("dropout_implementation");
float* mask_data_table = nullptr;
PADDLE_ENFORCE_EQ(!context.HasInput("Seed"), true,
platform::errors::InvalidArgument(
("Input(Seed) not supported on XPU")));
if (!context.Attr<bool>("is_test")) {
int dev_id =
BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()).GetDeviceId();
int prop = static_cast<int>(dropout_prob * 100);
int is_upscale = (dropout_implementation == "upscale_in_train");
/* mask_data_tables key contains 3 part:
* | 31-16 | 15-8 | 7-0 |
* | dev_id | prob | is_upscale |
*/
int index = (dev_id << 16) + (prop << 8) + is_upscale;
std::lock_guard<std::mutex> lock(s_mask_data_table_lock);
if (mask_data_tables.find(index) == mask_data_tables.end()) {
float* mask_data_host = new float[max_data_size];
std::random_device rnd;
std::minstd_rand engine;
int seed =
context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
engine.seed(seed);
std::uniform_real_distribution<float> dist(0, 1);
for (size_t i = 0; i < max_data_size; ++i) {
if (dist(engine) < dropout_prob) {
mask_data_host[i] = 0.0f;
} else {
if (is_upscale) {
mask_data_host[i] = 1.0f / static_cast<T>(1.0f - dropout_prob);
} else {
mask_data_host[i] = 1.0;
}
}
}
PADDLE_ENFORCE_EQ(
xpu_malloc(reinterpret_cast<void**>(&mask_data_table),
max_data_size * sizeof(float)),
XPU_SUCCESS,
platform::errors::ResourceExhausted(
"\n\nOut of memory error on XPU, Cannot"
"allocate %s memory on XPU. \n\nPlease "
"check whether there is any other process "
"using XPU.\n",
string::HumanReadableSize(max_data_size * sizeof(void*))));
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
mask_data_table, platform::CPUPlace(), mask_data_host,
max_data_size * sizeof(float));
mask_data_tables[index] = mask_data_table;
free(mask_data_host);
} else {
mask_data_table = mask_data_tables[index];
}
}
if (!context.Attr<bool>("is_test")) { // Train
auto* mask = context.Output<Tensor>("Mask");
auto* mask_data = mask->mutable_data<T>(context.GetPlace());
size_t size = framework::product(mask->dims());
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::dropout(dev_ctx.x_context(), mask_data_table, x_data,
mask_data, y_data, max_data_size, size);
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External(
"XPU dropout return wrong value[%d], please check whether "
"Baidu Kunlun Card is properly installed.",
r));
} else { // Infer
float scale = 0.0f;
if (dropout_implementation == "upscale_in_train") {
scale = 1.0f;
} else {
scale = static_cast<T>(1.0f - dropout_prob);
}
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::scale(dev_ctx.x_context(), x->numel(), scale, 0.0f, 0,
x_data, y_data);
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External(
"XPU dropout return wrong value[%d], please check whether "
"Baidu Kunlun Card is properly installed.",
r));
}
}
};
template <typename DeviceContext, typename T>
class DropoutGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE_EQ(!context.Attr<bool>("is_test"), true,
platform::errors::InvalidArgument(
"GradOp is only callable when is_test is false"));
auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
auto* mask = context.Input<Tensor>("Mask");
grad_x->mutable_data<T>(context.GetPlace());
auto& dev_ctx = context.template device_context<DeviceContext>();
int r = xpu::elementwise_mul(dev_ctx.x_context(), grad_y->data<T>(),
mask->data<T>(), grad_x->data<T>(),
grad_y->numel());
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::External(
"XPU dropout return wrong value[%d], please check whether "
"Baidu Kunlun Card is properly installed.",
r));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
dropout, ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
dropout_grad,
ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif