You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
6.4 KiB
150 lines
6.4 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
#include "paddle/fluid/operators/dropout_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include "paddle/fluid/platform/xpu_header.h"
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
static std::map<int, float*> mask_data_tables;
|
|
static const int max_data_size = 32 * 1024 * 1024;
|
|
static std::mutex s_mask_data_table_lock;
|
|
template <typename DeviceContext, typename T>
|
|
class DropoutXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* x = context.Input<Tensor>("X");
|
|
auto* y = context.Output<Tensor>("Out");
|
|
const auto* x_data = x->data<T>();
|
|
auto* y_data = y->mutable_data<T>(context.GetPlace());
|
|
float dropout_prob = context.Attr<float>("dropout_prob");
|
|
auto dropout_implementation =
|
|
context.Attr<std::string>("dropout_implementation");
|
|
float* mask_data_table = nullptr;
|
|
PADDLE_ENFORCE_EQ(!context.HasInput("Seed"), true,
|
|
platform::errors::InvalidArgument(
|
|
("Input(Seed) not supported on XPU")));
|
|
if (!context.Attr<bool>("is_test")) {
|
|
int dev_id =
|
|
BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()).GetDeviceId();
|
|
int prop = static_cast<int>(dropout_prob * 100);
|
|
int is_upscale = (dropout_implementation == "upscale_in_train");
|
|
/* mask_data_tables key contains 3 part:
|
|
* | 31-16 | 15-8 | 7-0 |
|
|
* | dev_id | prob | is_upscale |
|
|
*/
|
|
int index = (dev_id << 16) + (prop << 8) + is_upscale;
|
|
std::lock_guard<std::mutex> lock(s_mask_data_table_lock);
|
|
if (mask_data_tables.find(index) == mask_data_tables.end()) {
|
|
float* mask_data_host = new float[max_data_size];
|
|
std::random_device rnd;
|
|
std::minstd_rand engine;
|
|
int seed =
|
|
context.Attr<bool>("fix_seed") ? context.Attr<int>("seed") : rnd();
|
|
engine.seed(seed);
|
|
std::uniform_real_distribution<float> dist(0, 1);
|
|
for (size_t i = 0; i < max_data_size; ++i) {
|
|
if (dist(engine) < dropout_prob) {
|
|
mask_data_host[i] = 0.0f;
|
|
} else {
|
|
if (is_upscale) {
|
|
mask_data_host[i] = 1.0f / static_cast<T>(1.0f - dropout_prob);
|
|
} else {
|
|
mask_data_host[i] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
PADDLE_ENFORCE_EQ(
|
|
xpu_malloc(reinterpret_cast<void**>(&mask_data_table),
|
|
max_data_size * sizeof(float)),
|
|
XPU_SUCCESS,
|
|
platform::errors::ResourceExhausted(
|
|
"\n\nOut of memory error on XPU, Cannot"
|
|
"allocate %s memory on XPU. \n\nPlease "
|
|
"check whether there is any other process "
|
|
"using XPU.\n",
|
|
string::HumanReadableSize(max_data_size * sizeof(void*))));
|
|
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()),
|
|
mask_data_table, platform::CPUPlace(), mask_data_host,
|
|
max_data_size * sizeof(float));
|
|
mask_data_tables[index] = mask_data_table;
|
|
free(mask_data_host);
|
|
} else {
|
|
mask_data_table = mask_data_tables[index];
|
|
}
|
|
}
|
|
if (!context.Attr<bool>("is_test")) { // Train
|
|
auto* mask = context.Output<Tensor>("Mask");
|
|
auto* mask_data = mask->mutable_data<T>(context.GetPlace());
|
|
size_t size = framework::product(mask->dims());
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
int r = xpu::dropout(dev_ctx.x_context(), mask_data_table, x_data,
|
|
mask_data, y_data, max_data_size, size);
|
|
PADDLE_ENFORCE_EQ(
|
|
r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"XPU dropout return wrong value[%d], please check whether "
|
|
"Baidu Kunlun Card is properly installed.",
|
|
r));
|
|
} else { // Infer
|
|
float scale = 0.0f;
|
|
if (dropout_implementation == "upscale_in_train") {
|
|
scale = 1.0f;
|
|
} else {
|
|
scale = static_cast<T>(1.0f - dropout_prob);
|
|
}
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
int r = xpu::scale(dev_ctx.x_context(), x->numel(), scale, 0.0f, 0,
|
|
x_data, y_data);
|
|
PADDLE_ENFORCE_EQ(
|
|
r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"XPU dropout return wrong value[%d], please check whether "
|
|
"Baidu Kunlun Card is properly installed.",
|
|
r));
|
|
}
|
|
}
|
|
};
|
|
template <typename DeviceContext, typename T>
|
|
class DropoutGradXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
PADDLE_ENFORCE_EQ(!context.Attr<bool>("is_test"), true,
|
|
platform::errors::InvalidArgument(
|
|
"GradOp is only callable when is_test is false"));
|
|
auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* mask = context.Input<Tensor>("Mask");
|
|
grad_x->mutable_data<T>(context.GetPlace());
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
int r = xpu::elementwise_mul(dev_ctx.x_context(), grad_y->data<T>(),
|
|
mask->data<T>(), grad_x->data<T>(),
|
|
grad_y->numel());
|
|
PADDLE_ENFORCE_EQ(
|
|
r, xpu::Error_t::SUCCESS,
|
|
platform::errors::External(
|
|
"XPU dropout return wrong value[%d], please check whether "
|
|
"Baidu Kunlun Card is properly installed.",
|
|
r));
|
|
}
|
|
};
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_XPU_KERNEL(
|
|
dropout, ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
|
REGISTER_OP_XPU_KERNEL(
|
|
dropout_grad,
|
|
ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
|
#endif
|