You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
260 lines
9.8 KiB
260 lines
9.8 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/interpolate_op.h"
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using framework::Tensor;
|
|
using DataLayout = framework::DataLayout;
|
|
|
|
inline std::vector<int> get_new_shape_xpu(
|
|
const std::vector<const Tensor*>& list_new_shape_tensor) {
|
|
// get tensor from
|
|
std::vector<int> vec_new_shape;
|
|
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
|
|
auto tensor = list_new_shape_tensor[i];
|
|
PADDLE_ENFORCE_EQ(
|
|
tensor->dims(), framework::make_ddim({1}),
|
|
platform::errors::InvalidArgument("shape of dim tensor should be [1]"));
|
|
if (platform::is_xpu_place(tensor->place())) {
|
|
framework::Tensor temp;
|
|
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
|
|
vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
|
|
} else {
|
|
vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
|
|
}
|
|
}
|
|
|
|
return vec_new_shape;
|
|
}
|
|
|
|
template <typename T>
|
|
inline std::vector<T> get_new_data_from_tensor_xpu(
|
|
const Tensor* new_data_tensor) {
|
|
std::vector<T> vec_new_data;
|
|
auto* new_data = new_data_tensor->data<T>();
|
|
framework::Tensor cpu_starts_tensor;
|
|
if (platform::is_xpu_place(new_data_tensor->place())) {
|
|
TensorCopySync(*new_data_tensor, platform::CPUPlace(), &cpu_starts_tensor);
|
|
new_data = cpu_starts_tensor.data<T>();
|
|
}
|
|
vec_new_data = std::vector<T>(new_data, new_data + new_data_tensor->numel());
|
|
return vec_new_data;
|
|
}
|
|
|
|
template <typename T>
|
|
class InterpolateXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
auto* output = ctx.Output<Tensor>("Out");
|
|
|
|
auto input_dims = input->dims();
|
|
PADDLE_ENFORCE_EQ(
|
|
input_dims.size(), 4,
|
|
platform::errors::External("XPU Interpolate kernel only support 2d"));
|
|
|
|
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
|
|
const DataLayout data_layout =
|
|
framework::StringToDataLayout(data_layout_str);
|
|
int n, c, in_d, in_h, in_w;
|
|
ExtractNCDWH(input_dims, data_layout, &n, &c, &in_d, &in_h, &in_w);
|
|
|
|
auto interp_method = ctx.Attr<std::string>("interp_method");
|
|
bool align_corners = ctx.Attr<bool>("align_corners");
|
|
int align_mode = ctx.Attr<int>("align_mode");
|
|
|
|
int out_h = ctx.Attr<int>("out_h");
|
|
int out_w = ctx.Attr<int>("out_w");
|
|
|
|
auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
|
|
if (list_new_size_tensor.size() > 0) {
|
|
// have size tensor
|
|
auto new_size = get_new_shape_xpu(list_new_size_tensor);
|
|
out_h = new_size[0];
|
|
out_w = new_size[1];
|
|
} else {
|
|
float scale;
|
|
auto scale_tensor = ctx.Input<Tensor>("Scale");
|
|
if (scale_tensor != nullptr) {
|
|
auto scale_data = get_new_data_from_tensor_xpu<float>(scale_tensor);
|
|
scale = scale_data[0];
|
|
} else {
|
|
scale = ctx.Attr<float>("scale");
|
|
}
|
|
if (scale > 0) {
|
|
out_h = static_cast<int>(in_h * scale);
|
|
out_w = static_cast<int>(in_w * scale);
|
|
}
|
|
auto out_size = ctx.Input<Tensor>("OutSize");
|
|
if (out_size != nullptr) {
|
|
auto out_size_data = get_new_data_from_tensor_xpu<int>(out_size);
|
|
out_h = out_size_data[0];
|
|
out_w = out_size_data[1];
|
|
}
|
|
}
|
|
PADDLE_ENFORCE_GT(out_h, 0, platform::errors::InvalidArgument(
|
|
"out_h in Attr(out_shape) of "
|
|
"Op(interpolate) "
|
|
"should be greater than 0."));
|
|
PADDLE_ENFORCE_GT(out_w, 0, platform::errors::InvalidArgument(
|
|
"out_w in Attr(out_shape) of "
|
|
"Op(interpolate) "
|
|
"should be greater than 0."));
|
|
framework::DDim dim_out;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
dim_out = {n, c, out_h, out_w};
|
|
} else {
|
|
dim_out = {n, out_h, out_w, c};
|
|
}
|
|
output->mutable_data<T>(dim_out, ctx.GetPlace());
|
|
|
|
if (in_h == out_h && in_w == out_w) {
|
|
framework::TensorCopy(*input, ctx.GetPlace(), output);
|
|
return;
|
|
}
|
|
bool nearest = "nearest" == interp_method;
|
|
int trans_mode = (align_corners) ? (0) : ((align_mode == 0) ? (1) : (2));
|
|
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
|
|
if (nearest) {
|
|
PADDLE_ENFORCE_EQ((data_layout == DataLayout::kNCHW), true,
|
|
platform::errors::InvalidArgument(
|
|
"XPU nearest is only support NCHW"));
|
|
}
|
|
int r = xpu::interpolate2d<float>(dev_ctx.x_context(), input->data<float>(),
|
|
output->data<float>(), n, c, in_h, in_w,
|
|
out_h, out_w, nearest, trans_mode,
|
|
(data_layout == DataLayout::kNCHW));
|
|
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
|
|
platform::errors::External("XPU interpolate2d kernel "
|
|
"return wrong value[%d %s]",
|
|
r, XPUAPIErrorMsg[r]));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class InterpolateGradXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
auto output_grad_dims = output_grad->dims();
|
|
|
|
PADDLE_ENFORCE_EQ(output_grad_dims.size(), 4,
|
|
platform::errors::External(
|
|
"XPU Interpolategrad kernel only support 2d"));
|
|
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
|
|
const DataLayout data_layout =
|
|
framework::StringToDataLayout(data_layout_str);
|
|
int n, c, in_d, in_h, in_w;
|
|
ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
|
|
|
|
auto interp_method = ctx.Attr<std::string>("interp_method");
|
|
bool align_corners = ctx.Attr<bool>("align_corners");
|
|
int align_mode = ctx.Attr<int>("align_mode");
|
|
|
|
int out_h = ctx.Attr<int>("out_h");
|
|
int out_w = ctx.Attr<int>("out_w");
|
|
float scale;
|
|
auto scale_tensor = ctx.Input<Tensor>("Scale");
|
|
if (scale_tensor != nullptr) {
|
|
auto scale_data = get_new_data_from_tensor_xpu<float>(scale_tensor);
|
|
scale = scale_data[0];
|
|
} else {
|
|
scale = ctx.Attr<float>("scale");
|
|
}
|
|
if (scale > 0) {
|
|
out_h = static_cast<int>(in_h * scale);
|
|
out_w = static_cast<int>(in_w * scale);
|
|
}
|
|
auto out_size = ctx.Input<Tensor>("OutSize");
|
|
if (out_size != nullptr) {
|
|
auto out_size_data = get_new_data_from_tensor_xpu<int>(out_size);
|
|
out_h = out_size_data[0];
|
|
out_w = out_size_data[1];
|
|
}
|
|
auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
|
|
if (list_new_size_tensor.size() > 0) {
|
|
// have size tensor
|
|
auto new_size = get_new_shape_xpu(list_new_size_tensor);
|
|
out_h = new_size[0];
|
|
out_w = new_size[1];
|
|
}
|
|
|
|
framework::DDim dim_grad;
|
|
if (data_layout == DataLayout::kNCHW) {
|
|
dim_grad = {n, c, in_h, in_w};
|
|
} else {
|
|
dim_grad = {n, in_h, in_w, c};
|
|
}
|
|
input_grad->mutable_data<T>(dim_grad, ctx.GetPlace());
|
|
|
|
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
|
|
|
|
int r = XPU_SUCCESS;
|
|
r = xpu::constant<T>(dev_ctx.x_context(), input_grad->data<T>(),
|
|
input_grad->numel(), static_cast<T>(0.0));
|
|
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
|
|
platform::errors::External(
|
|
"XPU constant in interpolate2d_grad kernel return "
|
|
"wrong value[%d %s]",
|
|
r, XPUAPIErrorMsg[r]));
|
|
|
|
if (in_h == out_h && in_w == out_w) {
|
|
framework::TensorCopy(*output_grad, ctx.GetPlace(), input_grad);
|
|
return;
|
|
}
|
|
|
|
bool nearest = "nearest" == interp_method;
|
|
int trans_mode = (align_corners) ? (0) : ((align_mode == 0) ? (1) : (2));
|
|
|
|
if (nearest) {
|
|
trans_mode = (align_corners) ? (0) : (2);
|
|
}
|
|
|
|
r = xpu::interpolate2d_grad<T>(dev_ctx.x_context(), output_grad->data<T>(),
|
|
input_grad->data<T>(), n, c, in_h, in_w,
|
|
out_h, out_w, nearest, trans_mode,
|
|
(data_layout == DataLayout::kNCHW));
|
|
PADDLE_ENFORCE_EQ(
|
|
r, XPU_SUCCESS,
|
|
platform::errors::External("XPU interpolate2d_grad kernel return "
|
|
"wrong value[%d %s]",
|
|
r, XPUAPIErrorMsg[r]));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_XPU_KERNEL(bilinear_interp, ops::InterpolateXPUKernel<float>);
|
|
REGISTER_OP_XPU_KERNEL(nearest_interp, ops::InterpolateXPUKernel<float>);
|
|
|
|
REGISTER_OP_XPU_KERNEL(bilinear_interp_grad,
|
|
ops::InterpolateGradXPUKernel<float>);
|
|
REGISTER_OP_XPU_KERNEL(nearest_interp_grad,
|
|
ops::InterpolateGradXPUKernel<float>);
|
|
#endif
|