You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
71 lines
2.6 KiB
71 lines
2.6 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/blas.h"
|
|
#include "paddle/fluid/operators/math/matrix_inverse.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class InverseKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* input = context.Input<framework::Tensor>("Input");
|
|
auto* output = context.Output<framework::Tensor>("Output");
|
|
output->mutable_data<T>(context.GetPlace());
|
|
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
math::MatrixInverseFunctor<DeviceContext, T> mat_inv;
|
|
mat_inv(dev_ctx, *input, output);
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class InverseGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* a_inv = context.Input<framework::Tensor>("Output");
|
|
auto* a_inv_grad =
|
|
context.Input<framework::Tensor>(framework::GradVarName("Output"));
|
|
auto* a_grad =
|
|
context.Output<framework::Tensor>(framework::GradVarName("Input"));
|
|
|
|
if (a_grad) {
|
|
a_grad->mutable_data<T>(context.GetPlace());
|
|
|
|
auto blas = math::GetBlas<DeviceContext, T>(context);
|
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
|
framework::Tensor tmp_out =
|
|
context.AllocateTmpTensor<T, DeviceContext>(a_inv->dims(), dev_ctx);
|
|
|
|
auto mat_dim_a0 =
|
|
math::CreateMatrixDescriptor(a_inv_grad->dims(), 0, false);
|
|
auto mat_dim_b0 = math::CreateMatrixDescriptor(a_inv->dims(), 0, true);
|
|
blas.MatMul(*a_inv_grad, mat_dim_a0, *a_inv, mat_dim_b0, T(1), &tmp_out,
|
|
T(0));
|
|
|
|
auto mat_dim_a1 = math::CreateMatrixDescriptor(a_inv->dims(), 0, true);
|
|
auto mat_dim_b1 = math::CreateMatrixDescriptor(tmp_out.dims(), 0, false);
|
|
blas.MatMul(*a_inv, mat_dim_a1, tmp_out, mat_dim_b1, T(-1), a_grad, T(0));
|
|
}
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|