You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
257 lines
10 KiB
257 lines
10 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <algorithm>
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/math/math_function.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CPUPSROIPoolOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<framework::Tensor>("X");
|
|
auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
|
|
auto* out = ctx.Output<framework::Tensor>("Out");
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
auto output_channels = ctx.Attr<int>("output_channels");
|
|
|
|
auto in_dims = in->dims();
|
|
int batch_size = in_dims[0];
|
|
int input_channels = in_dims[1];
|
|
int height = in_dims[2];
|
|
int width = in_dims[3];
|
|
int rois_num = rois->dims()[0];
|
|
|
|
auto in_stride = framework::stride(in_dims);
|
|
auto out_stride = framework::stride(out->dims());
|
|
|
|
const T* input_data = in->data<T>();
|
|
|
|
framework::Tensor rois_batch_id_list;
|
|
rois_batch_id_list.Resize({rois_num});
|
|
int* rois_batch_id_data =
|
|
rois_batch_id_list.mutable_data<int>(ctx.GetPlace());
|
|
|
|
auto rois_lod = rois->lod().back();
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
PADDLE_ENFORCE_EQ(
|
|
rois_batch_size, batch_size,
|
|
platform::errors::InvalidArgument("the rois_batch_size and input(X) "
|
|
"batch_size should be the same."));
|
|
int rois_num_with_lod = rois_lod[rois_batch_size];
|
|
PADDLE_ENFORCE_EQ(rois_num_with_lod, rois_num,
|
|
platform::errors::InvalidArgument(
|
|
"the rois_num from input and lod must be the same"));
|
|
|
|
PADDLE_ENFORCE_EQ(input_channels,
|
|
output_channels * pooled_height * pooled_width,
|
|
platform::errors::InvalidArgument(
|
|
"the channels of input "
|
|
"X should equal the product of "
|
|
"output_channels x pooled_height x pooled_width"));
|
|
|
|
// calculate batch id index for each roi according to LoD
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
rois_batch_id_data[i] = n;
|
|
}
|
|
}
|
|
|
|
T* output_data = out->mutable_data<T>(ctx.GetPlace());
|
|
const T* input_rois = rois->data<T>();
|
|
|
|
// calculate psroipooling, parallel processing can be implemented per ROI
|
|
for (int n = 0; n < rois_num; ++n) {
|
|
// set roi batch id
|
|
int roi_batch_id = rois_batch_id_data[n];
|
|
|
|
// [start, end) interval for spatial sampling
|
|
const T* offset_input_rois = input_rois + n * 4;
|
|
T roi_start_w =
|
|
static_cast<T>(round(offset_input_rois[0])) * spatial_scale;
|
|
T roi_start_h =
|
|
static_cast<T>(round(offset_input_rois[1])) * spatial_scale;
|
|
T roi_end_w =
|
|
static_cast<T>(round(offset_input_rois[2]) + 1.) * spatial_scale;
|
|
T roi_end_h =
|
|
static_cast<T>(round(offset_input_rois[3]) + 1.) * spatial_scale;
|
|
|
|
// Force too small rois to be 1 x 1
|
|
T roi_height = std::max(roi_end_h - roi_start_h, (T)0.1); // avoid 0
|
|
T roi_width = std::max(roi_end_w - roi_start_w, (T)0.1);
|
|
|
|
// Compute bin size w and h at input feature map
|
|
T bin_size_h = roi_height / static_cast<T>(pooled_height);
|
|
T bin_size_w = roi_width / static_cast<T>(pooled_width);
|
|
|
|
// calculate each pixel of the output feature map.
|
|
int out_roi_offset = n * out_stride[0];
|
|
for (int c = 0; c < output_channels; ++c) {
|
|
// per category
|
|
int out_plane_offset = out_roi_offset + c * out_stride[1];
|
|
for (int ph = 0; ph < pooled_height; ++ph) {
|
|
int out_row_offset = out_plane_offset + ph * out_stride[2];
|
|
for (int pw = 0; pw < pooled_width; ++pw) {
|
|
// calculate w and h at input feature map
|
|
int hstart = floor(static_cast<T>(ph) * bin_size_h + roi_start_h);
|
|
int wstart = floor(static_cast<T>(pw) * bin_size_w + roi_start_w);
|
|
int hend = ceil(static_cast<T>(ph + 1) * bin_size_h + roi_start_h);
|
|
int wend = ceil(static_cast<T>(pw + 1) * bin_size_w + roi_start_w);
|
|
// Add roi offsets and clip to input boundaries
|
|
hstart = std::min(std::max(hstart, 0), height);
|
|
wstart = std::min(std::max(wstart, 0), width);
|
|
hend = std::min(std::max(hend, 0), height);
|
|
wend = std::min(std::max(wend, 0), width);
|
|
|
|
int output_index = out_row_offset + pw;
|
|
int input_channel = (c * pooled_height + ph) * pooled_width + pw;
|
|
int input_plane_offset =
|
|
roi_batch_id * in_stride[0] + input_channel * in_stride[1];
|
|
const T* offset_input_data = input_data + input_plane_offset;
|
|
T out_sum = 0.;
|
|
bool is_empty = (hend <= hstart) || (wend <= wstart);
|
|
for (int ih = hstart; ih < hend; ++ih) {
|
|
for (int iw = wstart; iw < wend; ++iw) {
|
|
int input_index = ih * in_stride[2] + iw;
|
|
out_sum += offset_input_data[input_index];
|
|
}
|
|
}
|
|
T bin_area = (hend - hstart) * (wend - wstart);
|
|
output_data[output_index] = is_empty ? 0. : out_sum / bin_area;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class CPUPSROIPoolGradOpKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
auto* in = ctx.Input<framework::Tensor>("X");
|
|
auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
|
|
auto* output_grad =
|
|
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
|
auto* input_grad =
|
|
ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
|
|
|
auto pooled_height = ctx.Attr<int>("pooled_height");
|
|
auto pooled_width = ctx.Attr<int>("pooled_width");
|
|
auto output_channels = ctx.Attr<int>("output_channels");
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
|
|
if (input_grad) {
|
|
auto in_dims = in->dims();
|
|
int input_channels = in_dims[1];
|
|
int height = in_dims[2];
|
|
int width = in_dims[3];
|
|
int rois_num = rois->dims()[0];
|
|
|
|
// set roi batch id
|
|
framework::Tensor rois_batch_id_list;
|
|
rois_batch_id_list.Resize({rois_num});
|
|
int* rois_batch_id_data =
|
|
rois_batch_id_list.mutable_data<int>(ctx.GetPlace());
|
|
auto rois_lod = rois->lod().back();
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
// calculate batch id index for each roi according to LoD
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
rois_batch_id_data[i] = n;
|
|
}
|
|
}
|
|
|
|
const T* input_rois = rois->data<T>();
|
|
const T* output_grad_data = output_grad->data<T>();
|
|
T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
// set gradient of X to be 0. before backpropagate.
|
|
math::SetConstant<DeviceContext, T> set_zero;
|
|
set_zero(ctx.template device_context<DeviceContext>(), input_grad,
|
|
static_cast<T>(0));
|
|
|
|
// backpropagate gradient per output pixel
|
|
int output_grad_size = output_grad->numel();
|
|
for (int i = 0; i < output_grad_size; ++i) {
|
|
// The output is in order (n, c, ph, pw)
|
|
int pw = i % pooled_width;
|
|
int ph = (i / pooled_width) % pooled_height;
|
|
int c = (i / pooled_width / pooled_height) % output_channels;
|
|
int n = i / pooled_width / pooled_height / output_channels;
|
|
|
|
// set roi_batch_id
|
|
int roi_batch_id = rois_batch_id_data[n];
|
|
int input_channel = (c * pooled_height + ph) * pooled_width + pw;
|
|
int input_offset =
|
|
(roi_batch_id * input_channels + input_channel) * height * width;
|
|
T* offset_input_grad_data = input_grad_data + input_offset;
|
|
|
|
// [start, end) interval for spatial sampling
|
|
const T* offset_input_rois = input_rois + n * 4;
|
|
T roi_start_w =
|
|
static_cast<T>(round(offset_input_rois[0])) * spatial_scale;
|
|
T roi_start_h =
|
|
static_cast<T>(round(offset_input_rois[1])) * spatial_scale;
|
|
T roi_end_w =
|
|
static_cast<T>(round(offset_input_rois[2]) + 1.) * spatial_scale;
|
|
T roi_end_h =
|
|
static_cast<T>(round(offset_input_rois[3]) + 1.) * spatial_scale;
|
|
|
|
// Force too small ROIs to be 1x1
|
|
T roi_height = std::max(roi_end_h - roi_start_h, (T)0.1); // avoid 0
|
|
T roi_width = std::max(roi_end_w - roi_start_w, (T)0.1);
|
|
|
|
// Compute w and h at input feature map
|
|
T bin_size_h = roi_height / static_cast<T>(pooled_height);
|
|
T bin_size_w = roi_width / static_cast<T>(pooled_width);
|
|
|
|
int hstart = floor(bin_size_h * static_cast<T>(ph) + roi_start_h);
|
|
int wstart = floor(bin_size_w * static_cast<T>(pw) + roi_start_w);
|
|
int hend = ceil(bin_size_h * static_cast<T>(ph + 1) + roi_start_h);
|
|
int wend = ceil(bin_size_w * static_cast<T>(pw + 1) + roi_start_w);
|
|
|
|
// Add roi offsets and clip to input boundaries
|
|
hstart = std::min(std::max(hstart, 0), height);
|
|
hend = std::min(std::max(hend, 0), height);
|
|
wstart = std::min(std::max(wstart, 0), width);
|
|
wend = std::min(std::max(wend, 0), width);
|
|
bool is_empty = (hend <= hstart) || (wend <= wstart);
|
|
|
|
// Accumulate diff_val into input data
|
|
T bin_area = static_cast<T>((hend - hstart) * (wend - wstart));
|
|
T diff_val = is_empty ? 0. : output_grad_data[i] / bin_area;
|
|
for (int ih = hstart; ih < hend; ++ih) {
|
|
for (int iw = wstart; iw < wend; ++iw) {
|
|
int input_index = ih * width + iw;
|
|
offset_input_grad_data[input_index] += diff_val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|