You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
197 lines
7.8 KiB
197 lines
7.8 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/rank_attention_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
#include "paddle/fluid/framework/op_version_registry.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
using Tensor = framework::Tensor;
|
|
|
|
class RankAttentionOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(X) of RankAttentionOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("RankOffset"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(RankOffset) of RankAttentionOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("RankParam"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(RankParam) of RankAttentionOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasOutput("InsRank"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(InsRank) of RankAttentionOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasOutput("InputHelp"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(InputHelp) of RankAttentionOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasOutput("Out"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Output(Out) of RankAttentionOp should not be null."));
|
|
auto max_rank = ctx->Attrs().Get<int>("MaxRank");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto ins_num = x_dims[0];
|
|
auto param_dims = ctx->GetInputDim("RankParam");
|
|
auto para_col = param_dims[1];
|
|
auto rank_offset_dims = ctx->GetInputDim("RankOffset");
|
|
auto x_fea_dim = x_dims[1];
|
|
auto block_matrix_row = max_rank * x_fea_dim;
|
|
|
|
PADDLE_ENFORCE_EQ((rank_offset_dims[1] - 1) / 2, max_rank,
|
|
platform::errors::InvalidArgument(
|
|
"Input(RankOffset) has wrong columns, "
|
|
"except columns to be %d, but got %d",
|
|
max_rank, (rank_offset_dims[1] - 1) / 2));
|
|
|
|
ctx->SetOutputDim("Out", {ins_num, para_col});
|
|
ctx->SetOutputDim("InputHelp", {ins_num, block_matrix_row});
|
|
ctx->SetOutputDim("InsRank", {ins_num, 1});
|
|
ctx->ShareLoD("X", /*->*/ "Out");
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class RankAttentionGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("X"), true,
|
|
platform::errors::InvalidArgument("Input(X) should not be null"));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("RankParam"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(RankParam) should not be null"));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("RankOffset"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(RankOffset) should not be null"));
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("InputHelp"), true,
|
|
platform::errors::InvalidArgument(
|
|
"Input(InputHelp) should not be null"));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("InsRank"), true,
|
|
platform::errors::InvalidArgument("Input(InsRank) should not be null"));
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("RankParam"),
|
|
ctx->GetInputDim("RankParam"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class RankAttentionOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) Input tensor of rank_attention_Op operator.");
|
|
AddInput("RankOffset",
|
|
"(Tensor) Input tensor of rank_attention_Op operator.");
|
|
AddInput("RankParam",
|
|
"(Tensor) Input tensor of rank_attention_Op operator.");
|
|
AddOutput("InputHelp", "Output tensor of rank_attention_Op operator.")
|
|
.AsDispensable();
|
|
AddOutput("Out", "Output tensor of rank_attention_Op operator.");
|
|
AddOutput("InsRank", "Output tensor of rank_attention_Op operator.")
|
|
.AsDispensable();
|
|
AddAttr<int>("MaxRank", "(int, default 3) max rank of rank_attention_Op")
|
|
.SetDefault(3);
|
|
AddAttr<int>("MaxSize", "(int, default 0) max rank of rank_attention_Op")
|
|
.SetDefault(0);
|
|
AddComment(R"DOC(
|
|
RankAttention Operator.
|
|
This Op can calculate rank attention between input and rank_param,
|
|
and rank_param gives the organization of data. Notice: It currently supports GPU device.
|
|
This Op exists in contrib, which means that it is not shown to the public.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class RankAttentionGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("rank_attention_grad");
|
|
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("RankOffset", this->Input("RankOffset"));
|
|
op->SetInput("RankParam", this->Input("RankParam"));
|
|
op->SetInput("InputHelp", this->Output("InputHelp"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetInput("InsRank", this->Output("InsRank"));
|
|
|
|
op->SetOutput(framework::GradVarName("RankParam"),
|
|
this->InputGrad("RankParam"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
|
|
RankAttentionGradOpNoNeedBufferVarsInference, "X", "RankOffset",
|
|
"RankParam");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(rank_attention, ops::RankAttentionOp,
|
|
ops::RankAttentionOpMaker,
|
|
ops::RankAttentionGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::RankAttentionGradOpMaker<paddle::imperative::OpBase>);
|
|
|
|
REGISTER_OPERATOR(rank_attention_grad, ops::RankAttentionGradOp,
|
|
ops::RankAttentionGradOpNoNeedBufferVarsInference);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
rank_attention,
|
|
ops::RankAttentionKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::RankAttentionKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OP_VERSION(rank_attention)
|
|
.AddCheckpoint(
|
|
R"ROC(
|
|
Upgrade rank_attention, add 1 outputs [InputHelp] and 1 attribute
|
|
[MaxSize].
|
|
)ROC",
|
|
paddle::framework::compatible::OpVersionDesc()
|
|
.NewOutput("InputHelp",
|
|
"Output tensor of rank_attention_Op operator "
|
|
"in order to assist calculation in the reverse process.")
|
|
.NewAttr(
|
|
"MaxSize",
|
|
"Forward calculation to set the pre-applied video memory size",
|
|
0));
|