You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/reader/buffered_reader.cc

247 lines
9.1 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/buffered_reader.h"
#include "paddle/fluid/platform/profiler.h"
namespace paddle {
namespace operators {
namespace reader {
BufferedReader::~BufferedReader() {
VLOG(1) << "~BufferedReader";
reader_->Shutdown();
while (!position_.empty()) {
auto &front = position_.front();
if (front.valid()) {
front.wait();
}
position_.pop();
}
}
BufferedReader::BufferedReader(
const std::shared_ptr<framework::ReaderBase> &reader,
const platform::Place &place, size_t buffer_size, bool pin_memory)
: framework::DecoratedReader(reader),
thread_pool_(1),
place_(place),
buffer_size_(buffer_size),
pin_memory_(pin_memory) {
VLOG(1) << "BufferedReader";
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
if (platform::is_gpu_place(place_) && !pin_memory) {
int dev_idx = BOOST_GET_CONST(platform::CUDAPlace, place_).device;
compute_stream_ =
((platform::CUDADeviceContext *)(platform::DeviceContextPool::Instance()
.Get(place_)))
->stream();
events_.resize(buffer_size);
for (auto &event : events_) {
event = platform::CudaEventResourcePool::Instance().New(dev_idx);
}
stream_ = platform::CudaStreamResourcePool::Instance().New(dev_idx);
}
#endif
is_same_place_ = false;
cpu_buffer_.resize(buffer_size);
cuda_buffer_.resize(buffer_size);
ReadTillBufferFullAsync();
}
void BufferedReader::ReadTillBufferFullAsync() {
for (size_t i = 0; i < buffer_size_; ++i) {
ReadAsync(i);
}
}
void BufferedReader::ReadAsync(size_t i) {
position_.emplace(thread_pool_.enqueue([this, i]() -> size_t {
TensorVec &cpu = cpu_buffer_[i];
reader_->ReadNext(&cpu);
if (cpu.empty()) {
return -1UL;
}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) // @{ Group GPU Place
if (platform::is_gpu_place(place_)) {
TensorVec &cuda = cuda_buffer_[i];
if (cuda.empty()) {
cuda.resize(cpu.size());
} else {
PADDLE_ENFORCE_EQ(
cuda.size(), cpu.size(),
platform::errors::InvalidArgument(
"Input tensor number on GPU and CPU devices are not matched."));
}
if (pin_memory_) {
// NOTE: [Copy processing of different input devices]
// We may accept input tensor in three different devices:
// - CPUPlace
// - CUDAPinnedPlace
// - CUDAPlace
// CUDA Stream Synchronizing is slow, in order to avoid Synchronizing
// in BufferedReader thread, we do data copy as follows:
// - If src Tensor on CPU memory, we copy it to CUDAPinned memory
// - IF src Tensor on CUDAPinned memory, we use it directly
// - IF src Tensor on CUDA memory, we use it directly
platform::CUDAPinnedPlace cuda_pinned_place;
std::vector<void *> cuda_pinned_ptrs;
cuda_pinned_ptrs.reserve(cpu.size());
platform::RecordEvent record_event("BufferedReader:MemoryCopy");
// NODE(chenwehiang): When we use CUDAPinned Memory, we need call
// cudaHostAlloc, that is a CUDA API, calling CUDA API need load
// cuda lib into device, it will cost hundreds of MB of GPU memory.
// If we don't set Device here, which will use CUDAPlace(0) default.
platform::SetDeviceId(
BOOST_GET_CONST(platform::CUDAPlace, place_).device);
for (size_t i = 0; i < cpu.size(); ++i) {
if (platform::is_cpu_place(cpu[i].place())) {
cuda[i].Resize(cpu[i].dims());
cuda[i].set_layout(cpu[i].layout());
cuda_pinned_ptrs.emplace_back(
cuda[i].mutable_data(cuda_pinned_place, cpu[i].type()));
auto size =
cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());
memory::Copy(cuda_pinned_place, cuda_pinned_ptrs[i],
BOOST_GET_CONST(platform::CPUPlace, cpu[i].place()),
cpu[i].data<void>(), size);
cuda[i].set_lod(cpu[i].lod());
} else {
// we set same place flag & use cpu[i] directly
is_same_place_ = true;
}
}
} else {
// NOTE(liangdun): using async copy instead of TensorCopySync
// TensorCopySync would block other stream, because TensorCopySync
// issues the copying command to the default stream, it will make two
// commands from different streams cannot run concurrently.
std::vector<void *> gpu_ptrs;
gpu_ptrs.reserve(cpu.size());
for (size_t i = 0; i < cpu.size(); ++i) {
cuda[i].Resize(cpu[i].dims());
cuda[i].set_layout(cpu[i].layout());
gpu_ptrs.emplace_back(cuda[i].mutable_data(place_, cpu[i].type()));
}
// NOTE(zjl): cudaStreamWaitEvent() must be called after all
// cuda[i].mutable_data() is called, since some ops release
// cuda memory immediately without waiting cuda kernel ends
platform::SetDeviceId(
BOOST_GET_CONST(platform::CUDAPlace, place_).device);
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS(
hipEventRecord(events_[i].get(), compute_stream_));
PADDLE_ENFORCE_CUDA_SUCCESS(
hipStreamWaitEvent(stream_.get(), events_[i].get(), 0));
#else
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaEventRecord(events_[i].get(), compute_stream_));
PADDLE_ENFORCE_CUDA_SUCCESS(
cudaStreamWaitEvent(stream_.get(), events_[i].get(), 0));
#endif
platform::RecordEvent record_event("BufferedReader:MemoryCopy");
for (size_t i = 0; i < cpu.size(); ++i) {
auto cpu_place = cpu[i].place();
auto cpu_ptr = cpu[i].data<void>();
auto gpu_ptr = gpu_ptrs[i];
auto size =
cpu[i].numel() * paddle::framework::SizeOfType(cpu[i].type());
if (platform::is_cuda_pinned_place(cpu_place)) {
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
BOOST_GET_CONST(platform::CUDAPinnedPlace, cpu_place),
cpu_ptr, size, stream_.get());
} else if ((platform::is_gpu_place(cpu_place))) {
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
BOOST_GET_CONST(platform::CUDAPlace, cpu_place),
cpu_ptr, size, stream_.get());
} else {
platform::CUDAPinnedPlace cuda_pinned_place;
framework::LoDTensor cuda_pinned_tensor;
cuda_pinned_tensor.Resize(cpu[i].dims());
auto cuda_pinned_ptr = cuda_pinned_tensor.mutable_data(
cuda_pinned_place, cpu[i].type());
memory::Copy(cuda_pinned_place, cuda_pinned_ptr,
BOOST_GET_CONST(platform::CPUPlace, cpu_place),
cpu_ptr, size);
memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place_), gpu_ptr,
cuda_pinned_place, cuda_pinned_ptr, size,
stream_.get());
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream_.get()));
#else
PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get()));
#endif
}
cuda[i].set_lod(cpu[i].lod());
}
#ifdef PADDLE_WITH_HIP
PADDLE_ENFORCE_CUDA_SUCCESS(hipStreamSynchronize(stream_.get()));
#else
PADDLE_ENFORCE_CUDA_SUCCESS(cudaStreamSynchronize(stream_.get()));
#endif
}
}
#endif // @} End Group GPU Place
return i;
}));
}
void BufferedReader::ShutdownImpl() {
VLOG(1) << "ShutdownImpl";
reader_->Shutdown();
while (!position_.empty()) {
position_.pop();
}
prev_pos_ = -1UL;
}
void BufferedReader::StartImpl() {
reader_->Start();
ReadTillBufferFullAsync();
}
void BufferedReader::ReadNextImpl(std::vector<framework::LoDTensor> *out) {
if (position_.empty()) {
out->clear();
return;
}
size_t i = position_.front().get();
position_.pop();
if (i == -1UL) {
ReadNextImpl(out);
return;
}
*out = std::move((platform::is_gpu_place(place_) && !is_same_place_)
? cuda_buffer_[i]
: cpu_buffer_[i]);
// Do not push current position into ReadAsync. Push the previous position
// Since all computation in fluid are async, change the data of
// current position may cause data error.
if (prev_pos_ != -1Ul) {
ReadAsync(prev_pos_);
}
prev_pos_ = i;
}
} // namespace reader
} // namespace operators
} // namespace paddle