You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
167 lines
6.4 KiB
167 lines
6.4 KiB
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/segment_pool_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SegmentPoolOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SegmentPool");
|
|
OP_INOUT_CHECK(ctx->HasInput("SegmentIds"), "Input", "SegmentIds",
|
|
"SegmentPool");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SegmentPool");
|
|
auto dims = ctx->GetInputDim("X");
|
|
dims[0] = -1;
|
|
ctx->SetOutputDim("Out", dims);
|
|
|
|
if (ctx->Attrs().Get<std::string>("pooltype") == "MEAN") {
|
|
OP_INOUT_CHECK(ctx->HasOutput("SummedIds"), "Output", "SummedIds",
|
|
"SegmentPool");
|
|
ctx->SetOutputDim("SummedIds", {-1, 1});
|
|
}
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(
|
|
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
class SegmentPoolOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(Tensor) The input data of SegmentPoolOp");
|
|
AddInput("SegmentIds",
|
|
"(Tensor) 1-D tensor which have the same size with the fist "
|
|
"dimension of input X.");
|
|
AddOutput("Out", "(Tensor) The output of SegmentPoolOp.");
|
|
AddOutput("SummedIds",
|
|
"(Tensor) This tensor is used to counts of segment ids for the "
|
|
"backward of the mean pool.")
|
|
.AsIntermediate();
|
|
AddAttr<std::string>(
|
|
"pooltype",
|
|
"(string, default 'SUM') the pooling type of SegmentPoolOp.")
|
|
.SetDefault("SUM")
|
|
.InEnum({"SUM", "MEAN", "MIN", "MAX"});
|
|
AddComment(R"DOC(
|
|
Segment Pool Operator.
|
|
|
|
This operator will pool the elements of input `X` which with the same index
|
|
in `SegmentIds`.
|
|
|
|
For SUM operation, it computes a tensor such that $Out_i = \sum_{j} X_{j}$
|
|
where sum is over j such that `SegmentIds[j] == i`.
|
|
|
|
For MEAN operation, it computes a tensor such that
|
|
$Out_i = \frac{1}{n_i} \sum_{j} X_{j}$ where sum is over j such that
|
|
`SegmentIds[j] == i` and $n_i$ is the number of all index `SegmentIds[j] == i`.
|
|
|
|
For MIN operation, it computes a tensor such that $Out_i = \min_{j} X_{j}$
|
|
where min is over j such that `SegmentIds[j] == i`.
|
|
|
|
For MAX operation, it computes a tensor such that $Out_i = \max_{j} X_{j}$
|
|
where max is over j such that `SegmentIds[j] == i`.
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SegmentPoolGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
framework::GradVarName("Out"), "SegmentPoolGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SegmentPoolGrad");
|
|
auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The rank of output grad must equal to Input(X). But "
|
|
"received: input rank %u, input shape [%s].",
|
|
og_dims.size(), og_dims));
|
|
for (int64_t i = 1; i < og_dims.size(); ++i) {
|
|
PADDLE_ENFORCE_EQ(
|
|
og_dims[i], x_dims[i],
|
|
platform::errors::InvalidArgument(
|
|
"The dimension mismatch between Input(OUT@GRAD) and "
|
|
"Input(X). Received Input(OUT@GRAD): input rank %u, "
|
|
"input shape [%s]; received Input(X): input rank %u, "
|
|
"input shape [%s].",
|
|
og_dims.size(), og_dims, x_dims.size(), x_dims));
|
|
}
|
|
|
|
ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class SegmentPoolGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op_desc_ptr) const override {
|
|
op_desc_ptr->SetType("segment_pool_grad");
|
|
op_desc_ptr->SetInput("X", this->Input("X"));
|
|
op_desc_ptr->SetInput("SegmentIds", this->Input("SegmentIds"));
|
|
op_desc_ptr->SetInput("Out", this->Output("Out"));
|
|
if (BOOST_GET_CONST(std::string, this->GetAttr("pooltype")) == "MEAN") {
|
|
op_desc_ptr->SetInput("SummedIds", this->Output("SummedIds"));
|
|
}
|
|
op_desc_ptr->SetInput(framework::GradVarName("Out"),
|
|
this->OutputGrad("Out"));
|
|
op_desc_ptr->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op_desc_ptr->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(segment_pool, ops::SegmentPoolOp, ops::SegmentPoolOpMaker,
|
|
ops::SegmentPoolGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::SegmentPoolGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(segment_pool_grad, ops::SegmentPoolGradOp);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
segment_pool,
|
|
ops::SegmentPoolKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SegmentPoolKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
segment_pool_grad,
|
|
ops::SegmentPoolGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SegmentPoolGradKernel<paddle::platform::CPUDeviceContext, double>);
|