You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/sequence_ops/sequence_concat_op.h

178 lines
6.1 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <utility>
#include <vector>
#include "boost/optional.hpp"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/concat_and_split.h"
namespace paddle {
namespace operators {
namespace detail {
template <typename Container>
inline framework::LoD ConcatLoD(const Container &xs,
std::vector<framework::Tensor> *xs_in_order) {
std::vector<size_t> result;
result.resize(xs[0].get().lod()[0].size());
for (size_t i = 1; i < result.size(); ++i) {
size_t sum = 0;
for (size_t j = 0; j < xs.size(); ++j) {
auto &x_lod = xs[j].get().lod()[0];
const framework::Tensor &tensor = xs[j].get();
if (x_lod[i - 1] < x_lod[i]) {
xs_in_order->emplace_back(tensor.Slice(x_lod[i - 1], x_lod[i]));
}
sum += x_lod[i];
}
result[i] = sum;
}
framework::LoD lod;
lod.emplace_back(result);
return lod;
}
template <typename T, typename... ARGS>
inline std::vector<std::reference_wrapper<T>> GetDataVectorSafely(
const std::vector<T *> &vec, ARGS &&... args) {
std::vector<std::reference_wrapper<T>> result;
result.reserve(vec.size());
for (auto *ptr : vec) {
PADDLE_ENFORCE_NOT_NULL(ptr, platform::errors::InvalidArgument(
"The input variable X contains nullptr."));
result.emplace_back(*ptr);
}
return result;
}
} // namespace detail
template <typename DeviceContext, typename T>
class SeqConcatKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto xs = detail::GetDataVectorSafely(
context.MultiInput<framework::LoDTensor>("X"));
auto &out = *context.Output<framework::LoDTensor>("Out");
size_t lod_size = 0;
for (auto &x : xs) {
if (lod_size == 0) {
PADDLE_ENFORCE_EQ(x.get().lod().empty(), false,
platform::errors::NotFound(
"Input(X) Tensor of SequenceConcatOp does not "
"contain LoD information."));
lod_size = x.get().lod()[0].size();
} else {
PADDLE_ENFORCE_EQ(lod_size, x.get().lod()[0].size(),
platform::errors::InvalidArgument(
"The lod size of each input must be the same, "
"But the lod size of input we received is %d, "
"the first input is %d",
x.get().lod()[0].size(), lod_size));
}
}
PADDLE_ENFORCE_NE(
lod_size, 0,
platform::errors::InvalidArgument(
"Each input must have sequence lod information. But we "
"received input lod size is %d",
lod_size));
std::vector<framework::Tensor> x_in_order;
out.set_lod(detail::ConcatLoD(xs, &x_in_order));
out.mutable_data<T>(context.GetPlace());
math::ConcatFunctor<DeviceContext, T> functor;
functor(context.template device_context<DeviceContext>(), x_in_order, 0,
&out);
}
};
template <typename DeviceContext, typename T>
class SeqConcatGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto xs = context.MultiInput<framework::LoDTensor>("X");
auto dxs =
context.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
PADDLE_ENFORCE_EQ(xs.size(), dxs.size(),
platform::errors::InvalidArgument(
"The rank of Input X and Output Grad X must be "
"same, But the rank of Input X we received is %d, "
"the rank of Output Grad X is %d",
xs.size(), dxs.size()));
for (size_t i = 0; i < dxs.size(); ++i) {
if (dxs[i] != nullptr) {
dxs[i]->set_lod(xs[i]->lod());
dxs[i]->mutable_data<T>(context.GetPlace());
}
}
std::vector<framework::Tensor> sliced_x;
std::vector<boost::optional<framework::Tensor>> sliced_dx;
for (size_t i = 1; i < xs[0]->lod()[0].size(); ++i) {
for (size_t j = 0; j < xs.size(); ++j) {
const framework::LoDTensor *x = xs[j];
framework::DDim x_dims = x->dims();
framework::LoDTensor *dx = dxs[j];
auto &x_lod = x->lod()[0];
if (x_lod[i - 1] == x_lod[i]) continue;
auto prev_lod = x_lod[i - 1];
auto next_lod = x_lod[i];
x_dims[0] = next_lod - prev_lod;
sliced_x.emplace_back();
sliced_x.back().Resize(x_dims);
if (dx) {
sliced_dx.emplace_back(dx->Slice(prev_lod, next_lod));
} else {
sliced_dx.emplace_back(boost::none);
}
}
}
std::vector<const framework::Tensor *> sliced_x_ptr;
sliced_x_ptr.reserve(sliced_x.size());
for (auto &x : sliced_x) {
sliced_x_ptr.emplace_back(&x);
}
std::vector<framework::Tensor *> sliced_dx_ptr;
sliced_dx_ptr.reserve(sliced_dx.size());
for (auto &dx : sliced_dx) {
if (dx) {
sliced_dx_ptr.emplace_back(&dx.get());
}
}
math::SplitFunctor<DeviceContext, T> functor;
functor(context.template device_context<DeviceContext>(),
GET_DATA_SAFELY(
context.Input<framework::Tensor>(framework::GradVarName("Out")),
"Input", framework::GradVarName("Out"), "SeqConcatGrad"),
sliced_x_ptr, 0, &sliced_dx_ptr);
}
};
} // namespace operators
} // namespace paddle