You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
7.6 KiB
190 lines
7.6 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/sequence_ops/sequence_pool_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SequencePoolOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequencePool");
|
|
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequencePool");
|
|
|
|
if (!ctx->IsRuntime()) {
|
|
// Check the lod_level for compile-time.
|
|
auto in_lod_level = ctx->GetLoDLevel("X");
|
|
PADDLE_ENFORCE_GT(in_lod_level, 0, platform::errors::InvalidArgument(
|
|
"The LoD level of Input(X) should "
|
|
"be larger than 0, but received: "
|
|
"lod level %u.",
|
|
in_lod_level));
|
|
ctx->SetLoDLevel("Out", in_lod_level - 1);
|
|
}
|
|
|
|
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
|
if (ctx->Attrs().Get<std::string>("pooltype") == "MAX") {
|
|
OP_INOUT_CHECK(ctx->HasOutput("MaxIndex"), "Output", "MaxIndex",
|
|
"SequencePool");
|
|
ctx->SetOutputDim("MaxIndex", ctx->GetInputDim("X"));
|
|
}
|
|
}
|
|
};
|
|
|
|
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp");
|
|
AddOutput("Out",
|
|
"(Tensor) The output of SequencePoolOp does not contain LoD "
|
|
"information.");
|
|
AddOutput("MaxIndex",
|
|
"(Tensor<int>) This tensor is used for the sequence max-pooling "
|
|
"to record the max indexes.")
|
|
.AsIntermediate();
|
|
AddAttr<bool>("is_test",
|
|
"(bool, default false) Set to true for inference only, false "
|
|
"for training. Some layers may run faster when this is true.")
|
|
.SetDefault(false);
|
|
AddAttr<std::string>(
|
|
"pooltype",
|
|
"(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.")
|
|
.SetDefault("AVERAGE")
|
|
.InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"});
|
|
AddAttr<float>("pad_value",
|
|
"(float, default 0.0) The value to pad for empty sequence.")
|
|
.SetDefault(0.0);
|
|
AddComment(R"DOC(
|
|
Sequence Pool Operator.
|
|
|
|
The SequencePoolOp pools features of all time-steps of each instance.
|
|
It supports six pooling types:
|
|
1. AVERAGE: $$Out[i] = \frac{\sum_i X_i}{N}$$
|
|
2. SUM: $$Out[i] = \sum_jX_{ij}$$
|
|
3. SQRT: $$Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
|
|
4. LAST: Out[i] = last instance in i-th sequence X[i]
|
|
5. FIRST: Out[i] = first instance in i-th sequence X[i]
|
|
6. MAX: $$Out[i] = max(X_i)$$
|
|
|
|
and for the empty sequence Out[i] = attr(pad_value).
|
|
|
|
The following example explains how this works:
|
|
For a mini-batch of 3 variable-length sentences,
|
|
containing 2, 3, and 2 time-steps:
|
|
|
|
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
|
|
Besides, for the sake of simplicity, we assume M=1 and N=1,
|
|
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
|
|
|
|
Thus, Out is a [3,1,1] Tensor without LoD information.
|
|
And for different pooltype, the value of Out is as follows:
|
|
|
|
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
|
|
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
|
|
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
|
|
6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
|
|
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
|
|
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
|
|
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SequencePoolGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
|
framework::GradVarName("Out"), "SequencePoolGrad");
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequencePoolGrad");
|
|
|
|
auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The rank of output grad must equal to Input(X). But "
|
|
"received: input rank %u, input shape [%s].",
|
|
og_dims.size(), og_dims));
|
|
for (int64_t i = 1; i < og_dims.size(); ++i) {
|
|
PADDLE_ENFORCE_EQ(
|
|
og_dims[i], x_dims[i],
|
|
platform::errors::InvalidArgument(
|
|
"The dimension mismatch between Input(OUT@GRAD) and "
|
|
"Input(X). Received Input(OUT@GRAD): input rank %u, "
|
|
"input shape [%s]; received Input(X): input rank %u, "
|
|
"input shape [%s].",
|
|
og_dims.size(), og_dims, x_dims.size(), x_dims));
|
|
}
|
|
|
|
ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
|
|
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext& ctx) const override {
|
|
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
|
|
ctx, framework::GradVarName("Out")),
|
|
ctx.device_context());
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class SequencePoolGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op_desc_ptr) const override {
|
|
op_desc_ptr->SetType("sequence_pool_grad");
|
|
op_desc_ptr->SetInput("X", this->Input("X"));
|
|
if (BOOST_GET_CONST(std::string, this->GetAttr("pooltype")) == "MAX") {
|
|
op_desc_ptr->SetInput("MaxIndex", this->Output("MaxIndex"));
|
|
}
|
|
op_desc_ptr->SetInput(framework::GradVarName("Out"),
|
|
this->OutputGrad("Out"));
|
|
op_desc_ptr->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op_desc_ptr->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SequencePoolGradOpNoNeedBufferVarsInferer,
|
|
"X");
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
|
|
ops::SequencePoolGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::SequencePoolGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(sequence_pool_grad, ops::SequencePoolGradOp,
|
|
ops::SequencePoolGradOpNoNeedBufferVarsInferer);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_pool,
|
|
ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, double>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_pool_grad,
|
|
ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, double>);
|