You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
5.8 KiB
151 lines
5.8 KiB
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "paddle/fluid/operators/sequence_ops/sequence_reshape_op.h"
|
|
#include <memory>
|
|
#include "paddle/fluid/framework/ddim.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SequenceReshapeOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
|
|
platform::errors::NotFound(
|
|
"Input(X) of SequenceReshapeOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasOutput("Out"), true,
|
|
platform::errors::NotFound(
|
|
"Output(Out) of SequenceReshapeOp should not be null."));
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto x_numel = product(x_dims);
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), 2U,
|
|
platform::errors::InvalidArgument(
|
|
"The rank of SequenceReshapeOp Input(X) should be 2. "
|
|
"But the rank we received is %d",
|
|
x_dims.size()));
|
|
int new_dim = ctx->Attrs().Get<int>("new_dim");
|
|
if (ctx->IsRuntime()) {
|
|
ctx->SetOutputDim("Out",
|
|
{x_numel / new_dim, static_cast<int64_t>(new_dim)});
|
|
} else {
|
|
// when compiling, the batch size is undetermined, just set to -1
|
|
ctx->SetOutputDim("Out", {-1, static_cast<int64_t>(new_dim)});
|
|
// when compiling, the LodLevel of Out is set to be 1, which is consistent
|
|
// with that in running time.
|
|
ctx->SetLoDLevel("Out", 1);
|
|
}
|
|
}
|
|
};
|
|
|
|
class SequenceReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor with shape "
|
|
"being [N, M].");
|
|
AddOutput("Out",
|
|
"(LoDTensor, default LoDTensor<float>) A 2-D LoDTensor with "
|
|
"shape [T, new_dim] where T is calculated based on X.lod, M and "
|
|
"new_dim.");
|
|
AddAttr<int>("new_dim", "Sequence dimension of the output LoDTensor.");
|
|
AddComment(R"DOC(
|
|
Sequence Reshape Operator.
|
|
|
|
This operator will rearrange the input sequences. The new dimension is set by
|
|
attribute and length of each sequence may change longer or shorter which is
|
|
decided by original length, original dimension and new dimension. The following
|
|
example will help to illustrate the function of this operator:
|
|
|
|
x is a LoDTensor:
|
|
x.lod = [[0, 2, 6]]
|
|
x.data = [[1, 2], [3, 4],
|
|
[5, 6], [7, 8], [9, 10], [11, 12]]
|
|
x.dims = [6, 2]
|
|
|
|
set new_dim = 4
|
|
|
|
then out is a LoDTensor:
|
|
out.lod = [[0, 1, 3]]
|
|
out.data = [[1, 2, 3, 4],
|
|
[5, 6, 7, 8], [9, 10, 11, 12]]
|
|
out.dims = [3, 4]
|
|
|
|
Currently, only 1-level LoDTensor is supported and please make sure (original
|
|
length * original dimension) can be divided by new_dim with no remainder for
|
|
each sequence.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SequenceReshapeGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput(framework::GradVarName("Out")), true,
|
|
platform::errors::NotFound(
|
|
"Input(Out@GRAD) of SequenceReshapeGradOp should not be null."));
|
|
PADDLE_ENFORCE_EQ(
|
|
ctx->HasInput("X"), true,
|
|
platform::errors::NotFound(
|
|
"Input(X) of SequenceReshapeGradOp should not be null."));
|
|
|
|
ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
|
|
ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class SequenceReshapeGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op_desc_ptr) const override {
|
|
op_desc_ptr->SetType("sequence_reshape_grad");
|
|
op_desc_ptr->SetInput("X", this->Input("X"));
|
|
op_desc_ptr->SetInput(framework::GradVarName("Out"),
|
|
this->OutputGrad("Out"));
|
|
op_desc_ptr->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op_desc_ptr->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(sequence_reshape, ops::SequenceReshapeOp,
|
|
ops::SequenceReshapeOpMaker,
|
|
ops::SequenceReshapeGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::SequenceReshapeGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(sequence_reshape_grad, ops::SequenceReshapeGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_reshape,
|
|
ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, int>,
|
|
ops::SequenceReshapeKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sequence_reshape_grad,
|
|
ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, double>,
|
|
ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
|
ops::SequenceReshapeGradKernel<paddle::platform::CPUDeviceContext, int>);
|