You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
278 lines
11 KiB
278 lines
11 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include <boost/preprocessor/arithmetic/div.hpp>
|
|
#include <boost/preprocessor/arithmetic/mod.hpp>
|
|
#include <boost/preprocessor/comparison/greater.hpp>
|
|
#include <boost/preprocessor/comparison/greater_equal.hpp>
|
|
#include <boost/preprocessor/control/if.hpp>
|
|
#include <boost/preprocessor/repetition/repeat.hpp>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/framework/operator.h"
|
|
|
|
#define MAX_RANK_SUPPORTED 6
|
|
|
|
#define TILE_TEMPLATE(z, n, data) \
|
|
case n + 1: { \
|
|
Tile<n + 1>(context); \
|
|
break; \
|
|
}
|
|
#define REP_TILE_TEMPLATE(n) BOOST_PP_REPEAT(n, TILE_TEMPLATE, ~)
|
|
#define COND(n) BOOST_PP_GREATER_EQUAL(n, BOOST_PP_MOD(n, MAX_RANK_SUPPORTED))
|
|
#define TILE_GRAD_CASE(n) \
|
|
case n: { \
|
|
TileBackward<n>(context, reshape_dims_vec, reduce_dims_vec); \
|
|
break; \
|
|
}
|
|
#define TILE_GRAD_TEMPLATE(z, n, data) BOOST_PP_IF(COND(n), TILE_GRAD_CASE(n), )
|
|
#define REP_TILE_GRAD_TEMPLATE(n) BOOST_PP_REPEAT(n, TILE_GRAD_TEMPLATE, ~)
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
inline std::vector<int> get_repeat_times(
|
|
const framework::ExecutionContext& ctx) {
|
|
if (ctx.HasInput("RepeatTimes")) {
|
|
auto* repeat_tensor = ctx.Input<framework::LoDTensor>("RepeatTimes");
|
|
auto* repeat_data = repeat_tensor->data<int>();
|
|
framework::Tensor cpu_repeat_tensor;
|
|
if (platform::is_gpu_place(repeat_tensor->place())) {
|
|
TensorCopySync(*repeat_tensor, platform::CPUPlace(), &cpu_repeat_tensor);
|
|
repeat_data = cpu_repeat_tensor.data<int>();
|
|
}
|
|
auto vec_repeat_times =
|
|
std::vector<int>(repeat_data, repeat_data + repeat_tensor->numel());
|
|
return vec_repeat_times;
|
|
}
|
|
|
|
auto list_repeat_times_tensor =
|
|
ctx.MultiInput<framework::Tensor>("repeat_times_tensor");
|
|
if (list_repeat_times_tensor.size() > 0) {
|
|
// get tensor from
|
|
std::vector<int> vec_repeat_times;
|
|
for (size_t i = 0; i < list_repeat_times_tensor.size(); ++i) {
|
|
auto tensor = list_repeat_times_tensor[i];
|
|
if (platform::is_gpu_place(tensor->place())) {
|
|
framework::Tensor temp;
|
|
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
|
|
vec_repeat_times.push_back(*temp.data<int32_t>());
|
|
} else {
|
|
vec_repeat_times.push_back(*tensor->data<int32_t>());
|
|
}
|
|
}
|
|
return vec_repeat_times;
|
|
} else {
|
|
return ctx.Attr<std::vector<int>>("repeat_times");
|
|
}
|
|
}
|
|
|
|
using Tensor = framework::Tensor;
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
|
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
|
typename IndexType = Eigen::DenseIndex>
|
|
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
|
using framework::To32BitIndex;
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class TileKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto rank = context.Input<Tensor>("X")->dims().size();
|
|
PADDLE_ENFORCE_GE(
|
|
rank, 1, platform::errors::InvalidArgument(
|
|
"The rank of the input 'x' for tile op must be a positive "
|
|
"integer, but the value received is %d.",
|
|
rank));
|
|
PADDLE_ENFORCE_LE(
|
|
rank, MAX_RANK_SUPPORTED,
|
|
platform::errors::InvalidArgument(
|
|
"The rank of the input 'x' for tile op "
|
|
"must be less than or equal to %d, but the value received is %d.",
|
|
MAX_RANK_SUPPORTED, rank));
|
|
auto repeat_times = get_repeat_times(context);
|
|
int repeat_times_size = repeat_times.size();
|
|
PADDLE_ENFORCE_GE(
|
|
repeat_times_size, 1,
|
|
platform::errors::InvalidArgument(
|
|
"The number of elements of the input 'repeat_times' for tile "
|
|
"op must be positive, but the value received is %d.",
|
|
repeat_times_size));
|
|
PADDLE_ENFORCE_LE(
|
|
repeat_times_size, MAX_RANK_SUPPORTED,
|
|
platform::errors::InvalidArgument(
|
|
"The number of elements of the input 'repeat_times' for tile op "
|
|
"must be less than or equal to %d, but the value received is %d.",
|
|
MAX_RANK_SUPPORTED, repeat_times_size));
|
|
rank = std::max(rank, repeat_times_size);
|
|
switch (rank) { REP_TILE_TEMPLATE(MAX_RANK_SUPPORTED) }
|
|
}
|
|
|
|
protected:
|
|
template <int Rank>
|
|
void Tile(const framework::ExecutionContext& context) const {
|
|
auto* in0 = context.Input<Tensor>("X");
|
|
|
|
auto in_dims = in0->dims();
|
|
auto repeat_times = get_repeat_times(context);
|
|
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
|
PADDLE_ENFORCE_GT(
|
|
repeat_times[i], 0,
|
|
platform::errors::InvalidArgument(
|
|
"All elements of the input 'repeat_times' for tile op must "
|
|
"be positive integers, but the value received is %d.",
|
|
repeat_times[i]));
|
|
}
|
|
auto vec_in_dims = framework::vectorize<int>(in_dims);
|
|
if (repeat_times.size() < vec_in_dims.size()) {
|
|
int diff = vec_in_dims.size() - repeat_times.size();
|
|
repeat_times.insert(repeat_times.begin(), diff, 1);
|
|
} else {
|
|
int diff = repeat_times.size() - vec_in_dims.size();
|
|
vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
|
|
}
|
|
PADDLE_ENFORCE_EQ(
|
|
repeat_times.size(), vec_in_dims.size(),
|
|
platform::errors::InvalidArgument(
|
|
"The rank (%d) of the input 'x' and the rank (%d) of the input "
|
|
"'repeat_times' for tile op must match after promotion.",
|
|
vec_in_dims.size(), repeat_times.size()));
|
|
auto* out0 = context.Output<Tensor>("Out");
|
|
Eigen::DSizes<int, Rank> bcast_dims;
|
|
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
|
bcast_dims[i] = repeat_times[i];
|
|
}
|
|
|
|
framework::DDim new_in_dims = framework::make_ddim(vec_in_dims);
|
|
framework::DDim out_dims(new_in_dims);
|
|
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
|
out_dims[i] *= repeat_times[i];
|
|
}
|
|
|
|
out0->Resize(out_dims);
|
|
auto x = EigenTensor<T, Rank>::From(*in0, new_in_dims);
|
|
out0->mutable_data<T>(context.GetPlace());
|
|
auto y = EigenTensor<T, Rank>::From(*out0, out_dims);
|
|
auto& place =
|
|
*context.template device_context<DeviceContext>().eigen_device();
|
|
// use 32-bit index to speed up
|
|
bool use_32bit_index = y.size() < Eigen::NumTraits<int>::highest();
|
|
if (use_32bit_index) {
|
|
To32BitIndex(y).device(place) = To32BitIndex(x).broadcast(bcast_dims);
|
|
} else {
|
|
y.device(place) = x.broadcast(bcast_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class TileGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
auto* x = context.Input<Tensor>("X");
|
|
auto repeat_times = get_repeat_times(context);
|
|
auto x_dims = x->dims();
|
|
auto vec_in_dims = framework::vectorize<int>(x_dims);
|
|
if (repeat_times.size() < vec_in_dims.size()) {
|
|
int diff = vec_in_dims.size() - repeat_times.size();
|
|
repeat_times.insert(repeat_times.begin(), diff, 1);
|
|
} else {
|
|
int diff = repeat_times.size() - vec_in_dims.size();
|
|
vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
|
|
}
|
|
// 1. reshape_dims_vec is the broadcast parameter.
|
|
// 2. reduce_dims_vec is the dimension parameter to compute gradients. For
|
|
// each dimension expanded, the gradients should be summed to original
|
|
// size.
|
|
std::vector<int> reshape_dims_vec;
|
|
std::vector<int> reduce_dims_vec;
|
|
for (size_t i = 0; i < repeat_times.size(); ++i) {
|
|
reduce_dims_vec.push_back(reshape_dims_vec.size());
|
|
reshape_dims_vec.push_back(repeat_times[i]);
|
|
reshape_dims_vec.push_back(vec_in_dims[i]);
|
|
}
|
|
|
|
int dims = reduce_dims_vec.size();
|
|
|
|
bool just_copy = true;
|
|
for (size_t i = 0; i < repeat_times.size(); i++) {
|
|
if (repeat_times[i] != 1) {
|
|
just_copy = false;
|
|
break;
|
|
}
|
|
}
|
|
// no need reduce, just copy
|
|
if (just_copy) {
|
|
auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
|
|
dx->mutable_data<T>(context.GetPlace());
|
|
framework::TensorCopy(*dout, context.GetPlace(), context.device_context(),
|
|
dx);
|
|
// TensorCopy may change the dims of dx
|
|
dx->Resize(x_dims);
|
|
} else {
|
|
PADDLE_ENFORCE_GE(dims, 1,
|
|
platform::errors::InvalidArgument(
|
|
"Th rank of the input 'Out@GRAD' for tile_grad op "
|
|
" must be greater than or equal to 1, but "
|
|
"the value received is %d.",
|
|
dims));
|
|
PADDLE_ENFORCE_LE(dims, MAX_RANK_SUPPORTED,
|
|
platform::errors::InvalidArgument(
|
|
"The rank of the input 'Out@GRAD' for tile_grad op "
|
|
"must be less than or equal "
|
|
"to %d, but the value received is %d.",
|
|
MAX_RANK_SUPPORTED, dims));
|
|
switch (dims) { REP_TILE_GRAD_TEMPLATE(MAX_RANK_SUPPORTED) }
|
|
}
|
|
}
|
|
|
|
protected:
|
|
template <int Dims>
|
|
void TileBackward(const framework::ExecutionContext& context,
|
|
const std::vector<int>& reshape_dims_vec,
|
|
const std::vector<int>& reduce_dims_vec) const {
|
|
size_t reshape_size = reshape_dims_vec.size();
|
|
size_t reduce_size = reduce_dims_vec.size();
|
|
auto* in0 = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
auto* out0 = context.Output<Tensor>(framework::GradVarName("X"));
|
|
out0->mutable_data<T>(context.GetPlace());
|
|
auto x_grad = EigenVector<T>::Flatten(*out0);
|
|
Eigen::DSizes<int, Dims * 2> reshape_dims;
|
|
for (size_t i = 0; i < reshape_size; ++i) {
|
|
reshape_dims[i] = reshape_dims_vec[i];
|
|
}
|
|
Eigen::DSizes<int, Dims> reduce_dims;
|
|
for (size_t i = 0; i < reduce_size; ++i) {
|
|
reduce_dims[i] = reduce_dims_vec[i];
|
|
}
|
|
|
|
auto out_grad = EigenVector<T>::Flatten(*in0);
|
|
x_grad.device(
|
|
*context.template device_context<DeviceContext>().eigen_device()) =
|
|
out_grad.reshape(reshape_dims)
|
|
.sum(reduce_dims)
|
|
.reshape(x_grad.dimensions());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|