You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
3.2 KiB
83 lines
3.2 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
|
|
#include <memory>
|
|
|
|
#include "paddle/fluid/operators/top_k_op.h"
|
|
#include "xpu/refactor/math.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
template <typename T>
|
|
class TopkXPUKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
// Get the top k elements of each row of input tensor
|
|
auto* input = ctx.Input<Tensor>("X");
|
|
auto* output = ctx.Output<Tensor>("Out");
|
|
auto* indices = ctx.Output<Tensor>("Indices");
|
|
|
|
size_t k = static_cast<int>(ctx.Attr<int>("k"));
|
|
auto* k_t = ctx.Input<Tensor>("K");
|
|
if (k_t) {
|
|
k = k_t->data<int>()[0];
|
|
framework::DDim output_dims = output->dims();
|
|
output_dims[output_dims.size() - 1] = k;
|
|
output->Resize(output_dims);
|
|
indices->Resize(output_dims);
|
|
}
|
|
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
|
|
Tensor indices_32_data_tensor;
|
|
int32_t* indices_int_data = indices_32_data_tensor.mutable_data<int32_t>(
|
|
ctx.GetPlace(), indices->numel());
|
|
// reshape input to a flattern matrix(like flat_inner_dims)
|
|
framework::DDim inputdims = input->dims();
|
|
const size_t row = framework::product(
|
|
framework::slice_ddim(inputdims, 0, inputdims.size() - 1));
|
|
const size_t col = inputdims[inputdims.size() - 1];
|
|
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
|
|
|
|
int ret = xpu::sorted_topk<T>(dev_ctx.x_context(), input->data<T>(),
|
|
output_data, indices_int_data, row, col, k);
|
|
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
|
|
platform::errors::External(
|
|
"XPU API return wrong value[%d] in call kernel name "
|
|
"[%s], please check "
|
|
"where Baidu Kunlun Card is properly installed.",
|
|
ret, "sorted_topk"));
|
|
ret = xpu::cast_v2<int32_t, int64_t>(dev_ctx.x_context(),
|
|
(const int32_t*)indices_int_data,
|
|
indices_data, indices->numel());
|
|
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
|
|
platform::errors::External(
|
|
"XPU API return wrong value[%d] in call kernel name "
|
|
"[%s], please check "
|
|
"where Baidu Kunlun Card is properly installed.",
|
|
ret, "cast_v2"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OP_XPU_KERNEL(top_k, ops::TopkXPUKernel<float>);
|
|
#endif
|