You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
153 lines
5.4 KiB
153 lines
5.4 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/huber_loss_op.h"
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class HuberLossOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "HuberLoss");
|
|
OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "HuberLoss");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
auto y_dims = ctx->GetInputDim("Y");
|
|
|
|
PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(),
|
|
platform::errors::InvalidArgument(
|
|
"Input(input) rank and Input(label) rank should be "
|
|
"same, but received input rank(%d) != label rank(%d)",
|
|
x_dims.size(), y_dims.size()));
|
|
|
|
bool contain_unknown_dim = framework::contain_unknown_dim(x_dims) ||
|
|
framework::contain_unknown_dim(y_dims);
|
|
if (ctx->IsRuntime() || !contain_unknown_dim) {
|
|
PADDLE_ENFORCE_EQ(
|
|
x_dims, y_dims,
|
|
platform::errors::InvalidArgument(
|
|
"The Input(input) and Input(label) should have the same "
|
|
"shape, but received input shape [%s] != label shape [%s]",
|
|
x_dims, y_dims));
|
|
}
|
|
|
|
auto out_dims = y_dims;
|
|
ctx->SetOutputDim("Residual", out_dims);
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
ctx->ShareLoD("X", "Out");
|
|
}
|
|
};
|
|
|
|
template <typename AttrType>
|
|
class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("X",
|
|
"The input value of huber loss op."
|
|
"X is a N-D tensor with shape [N_1, N_2,..., N_n].");
|
|
AddInput("Y",
|
|
"The target value of huber loss op."
|
|
"Y is a N-D tensor with shape [N_1, N_2,..., N_n].");
|
|
AddOutput("Residual",
|
|
"Intermediate tensor to cache residual value between Y and X."
|
|
"The shape is same as Input(X) and will be reused in backward.")
|
|
.AsIntermediate();
|
|
AddOutput("Out",
|
|
"The output N-D tensor with shape [N_1, N_2,..., N_n] "
|
|
"which represents the huber loss.");
|
|
AddAttr<AttrType>("delta", "Hyper parameter in huber loss.");
|
|
AddComment(R"DOC(
|
|
HuberLoss Operator.
|
|
|
|
Huber loss is a loss function used in robust regression. We define X as the
|
|
input value and Y as the target value. Huber loss can evaluate the fitness of
|
|
X to Y. Different from MSE loss, Huber loss is more robust for outliers. If the
|
|
shape of X and Y are [batch_size, 1]. The equation is:
|
|
|
|
$$
|
|
Out_{\delta}(X, Y)_i =
|
|
\begin{cases}
|
|
0.5 * (Y_i - X_i)^2,
|
|
\quad |Y_i - X_i| \leq \delta \\
|
|
\delta * (|Y_i - X_i| - 0.5 * \delta),
|
|
\quad otherwise
|
|
\end{cases}
|
|
$$
|
|
|
|
In the above equation, $Out_\delta(X, Y)_i$, $X_i$ and $Y_i$ represent the ith
|
|
element of Out, X and Y.
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class HuberLossGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
OP_INOUT_CHECK(ctx->HasInputs(framework::GradVarName("Out")), "Input",
|
|
"Out@GRAD", "HuberLossGrad");
|
|
|
|
auto residual_dims = ctx->GetInputDim("Residual");
|
|
|
|
auto x_grad_name = framework::GradVarName("X");
|
|
auto y_grad_name = framework::GradVarName("Y");
|
|
if (ctx->HasOutput(x_grad_name)) {
|
|
ctx->SetOutputDim(x_grad_name, residual_dims);
|
|
}
|
|
if (ctx->HasOutput(y_grad_name)) {
|
|
ctx->SetOutputDim(y_grad_name, residual_dims);
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class HuberLossGradOpMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("huber_loss_grad");
|
|
op->SetInput("Residual", this->Output("Residual"));
|
|
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
|
|
op->SetAttrMap(this->Attrs());
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
|
|
ops::HuberLossGradOpMaker<paddle::framework::OpDesc>,
|
|
ops::HuberLossGradOpMaker<paddle::imperative::OpBase>);
|
|
REGISTER_OPERATOR(huber_loss_grad, ops::HuberLossGradOp);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
huber_loss, ops::HuberLossKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::HuberLossKernel<paddle::platform::CPUDeviceContext, double>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
huber_loss_grad,
|
|
ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, double>);
|