You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
153 lines
5.1 KiB
153 lines
5.1 KiB
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#pragma once
|
|
#include <memory>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
#include "paddle/fluid/operators/norm_utils.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
using Tensor = framework::Tensor;
|
|
using LoDTensor = framework::LoDTensor;
|
|
using DataLayout = framework::DataLayout;
|
|
|
|
template <typename T>
|
|
using EigenArrayMap =
|
|
Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
|
|
template <typename T>
|
|
using ConstEigenArrayMap =
|
|
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
|
|
template <typename T>
|
|
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
|
|
template <typename T>
|
|
using ConstEigenVectorArrayMap =
|
|
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;
|
|
|
|
class InstanceNormOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext *ctx) const override;
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override;
|
|
};
|
|
|
|
class InstanceNormGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext *ctx) const override;
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override;
|
|
};
|
|
|
|
class InstanceNormDoubleGradOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
void InferShape(framework::InferShapeContext *ctx) const override;
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override;
|
|
};
|
|
|
|
class InstanceNormOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override;
|
|
};
|
|
|
|
template <typename T>
|
|
class InstanceNormGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("instance_norm_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
|
|
|
|
op->SetInput("Scale", this->Input("Scale"));
|
|
op->SetInput("SavedMean", this->Output("SavedMean"));
|
|
op->SetInput("SavedVariance", this->Output("SavedVariance"));
|
|
|
|
op->SetAttrMap(this->Attrs());
|
|
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
|
op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
|
|
op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
class InstanceNormDoubleGradMaker : public framework::SingleGradOpMaker<T> {
|
|
public:
|
|
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
|
|
|
protected:
|
|
void Apply(GradOpPtr<T> op) const override {
|
|
op->SetType("instance_norm_grad_grad");
|
|
op->SetInput("X", this->Input("X"));
|
|
op->SetInput("Scale", this->Input("Scale"));
|
|
op->SetInput("SavedMean", this->Input("SavedMean"));
|
|
op->SetInput("SavedVariance", this->Input("SavedVariance"));
|
|
op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
|
|
op->SetInput("DDScale", this->OutputGrad(framework::GradVarName("Scale")));
|
|
op->SetInput("DDBias", this->OutputGrad(framework::GradVarName("Bias")));
|
|
op->SetInput("DY", this->Input(framework::GradVarName("Y")));
|
|
|
|
op->SetAttrMap(this->Attrs());
|
|
op->SetOutput("DX", this->InputGrad("X"));
|
|
op->SetOutput("DScale", this->InputGrad("Scale"));
|
|
op->SetOutput("DDY", this->InputGrad(framework::GradVarName("Y")));
|
|
}
|
|
};
|
|
|
|
class InstanceNormOpInferVarType
|
|
: public framework::PassInDtypeAndVarTypeToOutput {
|
|
protected:
|
|
std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
|
|
const override {
|
|
static std::unordered_map<std::string, std::string> m{{"X", "Y"}};
|
|
return m;
|
|
}
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class InstanceNormKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override;
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class InstanceNormGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override;
|
|
};
|
|
|
|
template <typename DeviceContext, typename T>
|
|
class InstanceNormDoubleGradKernel : public framework::OpKernel<T> {
|
|
public:
|
|
void Compute(const framework::ExecutionContext &ctx) const override;
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|