You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
123 lines
4.9 KiB
123 lines
4.9 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/operators/optimizers/sgd_op.h"
|
|
#include <string>
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SGDOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
|
"Input(Param) of SGDOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
|
"Input(Grad) of SGDOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
|
|
"Input(LearningRate) of SGDOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
|
"Output(ParamOut) of SGDOp should not be null.");
|
|
|
|
auto lr_dims = ctx->GetInputDim("LearningRate");
|
|
PADDLE_ENFORCE_NE(framework::product(lr_dims), 0,
|
|
"Maybe the Input variable LearningRate has not "
|
|
"been initialized. You may need to confirm "
|
|
"if you put exe.run(startup_program) "
|
|
"after optimizer.minimize function.");
|
|
PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
|
|
"Learning rate should have 1 element");
|
|
auto param_dim = ctx->GetInputDim("Param");
|
|
if (ctx->GetInputsVarType("Grad")[0] ==
|
|
framework::proto::VarType::LOD_TENSOR) {
|
|
PADDLE_ENFORCE_EQ(
|
|
param_dim, ctx->GetInputDim("Grad"),
|
|
platform::errors::InvalidArgument(
|
|
"SGD Operator's input Param and Grad dimensions do not match. "
|
|
"The Param %s shape is [%s], but the Grad %s shape is [%s].",
|
|
ctx->Inputs("Param")[0], param_dim, ctx->Inputs("Grad")[0],
|
|
ctx->GetInputDim("Grad")));
|
|
}
|
|
ctx->SetOutputDim("ParamOut", param_dim);
|
|
}
|
|
|
|
protected:
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
const framework::ExecutionContext &ctx) const override {
|
|
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Param");
|
|
return framework::OpKernelType(data_type, ctx.device_context());
|
|
}
|
|
|
|
framework::OpKernelType GetKernelTypeForVar(
|
|
const std::string &var_name, const framework::Tensor &tensor,
|
|
const framework::OpKernelType &expected_kernel_type) const {
|
|
if (var_name == "LearningRate") {
|
|
return framework::OpKernelType(tensor.type(), tensor.place(),
|
|
tensor.layout());
|
|
}
|
|
return framework::OpKernelType(expected_kernel_type.data_type_,
|
|
tensor.place(), tensor.layout());
|
|
}
|
|
};
|
|
|
|
class SGDOpInferVarType : public framework::VarTypeInference {
|
|
public:
|
|
void operator()(framework::InferVarTypeContext *ctx) const override {
|
|
auto in_var_type = ctx->GetInputType("Param");
|
|
PADDLE_ENFORCE_EQ(in_var_type == framework::proto::VarType::SELECTED_ROWS ||
|
|
in_var_type == framework::proto::VarType::LOD_TENSOR,
|
|
true, platform::errors::InvalidArgument(
|
|
"The input Var's type should be LoDtensor or "
|
|
"SelectedRows, but the received type is %s",
|
|
in_var_type));
|
|
|
|
ctx->SetOutputType("ParamOut", in_var_type, framework::ALL_ELEMENTS);
|
|
}
|
|
};
|
|
|
|
class SGDOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
void Make() override {
|
|
AddInput("Param", "(Tensor or SelectedRows) Input parameter");
|
|
AddInput("LearningRate", "(Tensor) Learning rate of SGD");
|
|
AddInput("Grad", "(Tensor or SelectedRows) Input gradient");
|
|
AddOutput("ParamOut",
|
|
"(Tensor or SelectedRows, same with Param) "
|
|
"Output parameter, should share the same memory with Param");
|
|
AddComment(R"DOC(
|
|
|
|
SGD operator
|
|
|
|
This operator implements one step of the stochastic gradient descent algorithm.
|
|
|
|
$$param\_out = param - learning\_rate * grad$$
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
REGISTER_OPERATOR(
|
|
sgd, ops::SGDOp, ops::SGDOpMaker,
|
|
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
|
|
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
|
|
ops::SGDOpInferVarType);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
sgd, ops::SGDOpKernel<paddle::platform::CPUDeviceContext, float>,
|
|
ops::SGDOpKernel<paddle::platform::CPUDeviceContext, double>);
|