You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/shuffle_batch_op.cc

145 lines
5.7 KiB

// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/shuffle_batch_op.h"
#include <memory>
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace paddle {
namespace operators {
class ShuffleBatchOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("X"), true,
platform::errors::NotFound("Input(X) should not be null."));
PADDLE_ENFORCE_EQ(
ctx->HasInput("Seed"), true,
platform::errors::NotFound("Input(Seed) should not be null."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("Out"), true,
platform::errors::NotFound("Output(Out) should not be null."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("ShuffleIdx"), true,
platform::errors::NotFound("Output(ShuffleIdx) should not be null."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("SeedOut"), true,
platform::errors::NotFound("Output(SeedOut) should not be null."));
ctx->ShareDim("X", "Out");
ctx->ShareLoD("X", "Out");
ctx->ShareDim("Seed", "SeedOut");
ctx->ShareLoD("Seed", "SeedOut");
ctx->SetOutputDim("ShuffleIdx", framework::make_ddim({-1}));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(data_type, ctx.device_context());
}
};
class ShuffleBatchOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(LoDTensor) The input tensor of shuffle_batch op.");
AddInput("Seed", "(LoDTensor) The input seed tensor.");
AddAttr<int>(
"startup_seed",
"If input tensor 'Seed' is not initialized, the 'startup_seed' "
"will be used to replace it. The seed after shuffle batch will "
"be saved in 'SeedOut'. ")
.SetDefault(0);
AddOutput("Out", "(LoDTensor) The output tensor of shuffle_batch op.");
AddOutput("ShuffleIdx", "(Tensor) Record forword shuffle order");
AddOutput("SeedOut", "(LoDTensor) Saved new generated seed.");
AddComment(R"DOC(
Shuffle Batch Operator.
This operator is used to shuffle input $X$'s elements.
There is 2 input. The product of input dims (except last dim) numbers of elements will be shuffled. $Seed$ is tensor of seed.
There are 3 outputs. $Out$ is shuffled tensor of input. $ShuffleIdx$ is the tensor used to record shuffle order. $SeedOut$ is same tensor of $Seed$.
)DOC");
}
};
class ShuffleBatchOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("ShuffleIdx"), true,
platform::errors::NotFound("Input(ShuffleIdx) should not be null"));
PADDLE_ENFORCE_EQ(
ctx->HasInput(framework::GradVarName("Out")), true,
platform::errors::NotFound("Grad Input(Out) should not be null"));
PADDLE_ENFORCE_EQ(
ctx->HasOutput(framework::GradVarName("X")), true,
platform::errors::NotFound("Grad Output(X) should not be null"));
ctx->ShareDim(framework::GradVarName("Out"), framework::GradVarName("X"));
ctx->ShareLoD(framework::GradVarName("Out"), framework::GradVarName("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));
return framework::OpKernelType(data_type, ctx.device_context());
}
};
template <typename T>
class ShuffleBatchGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("shuffle_batch_grad");
op->SetInput("ShuffleIdx", this->Output("ShuffleIdx"));
op->SetAttrMap(this->Attrs());
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(shuffle_batch, ops::ShuffleBatchOp, ops::ShuffleBatchOpMaker,
ops::ShuffleBatchGradOpMaker<paddle::framework::OpDesc>,
ops::ShuffleBatchGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(shuffle_batch_grad, ops::ShuffleBatchOpGrad);
REGISTER_OP_CPU_KERNEL(shuffle_batch, ops::ShuffleBatchKernel<float>,
ops::ShuffleBatchKernel<double>,
ops::ShuffleBatchKernel<int32_t>,
ops::ShuffleBatchKernel<int64_t>);
REGISTER_OP_CPU_KERNEL(shuffle_batch_grad, ops::ShuffleBatchGradKernel<float>,
ops::ShuffleBatchGradKernel<double>,
ops::ShuffleBatchGradKernel<int32_t>,
ops::ShuffleBatchGradKernel<int64_t>);