You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
111 lines
3.5 KiB
111 lines
3.5 KiB
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/utils/Logging.h"
|
|
#include "paddle/utils/Stat.h"
|
|
#include "PoolProjectionLayer.h"
|
|
|
|
namespace paddle {
|
|
|
|
size_t PoolProjectionLayer::getSize() {
|
|
CHECK_EQ(inputLayers_.size(), 1UL);
|
|
size_t layerSize = 0;
|
|
imgSizeH_ = inputLayers_[0]->getOutput().getFrameHeight();
|
|
imgSizeW_ = inputLayers_[0]->getOutput().getFrameWidth();
|
|
if (imgSizeH_ == 0) {
|
|
imgSizeH_ = imgSizeY_;
|
|
}
|
|
if (imgSizeW_ == 0) {
|
|
imgSizeW_ = imgSize_;
|
|
}
|
|
|
|
outputH_ = outputSize(imgSizeH_, sizeY_, confPaddingY_, strideY_,
|
|
/* caffeMode */ false);
|
|
outputW_ = outputSize(imgSizeW_, sizeX_, confPadding_, stride_,
|
|
/* caffeMode */ false);
|
|
|
|
layerSize = outputH_ * outputW_ * channels_;
|
|
|
|
getOutput().setFrameHeight(outputH_);
|
|
getOutput().setFrameWidth(outputW_);
|
|
return layerSize;
|
|
}
|
|
|
|
void MaxPoolProjectionLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
/* malloc memory for the output_ if necessary */
|
|
/* note: one sample correspond to one ROW */
|
|
MatrixPtr input = getInputValue(0);
|
|
int batchSize = input->getHeight();
|
|
int size = getSize();
|
|
resetOutput(batchSize, size);
|
|
|
|
MatrixPtr outV = getOutputValue();
|
|
|
|
outV->maxPoolForward(*input, imgSizeH_, imgSizeW_, channels_, sizeX_, sizeY_,
|
|
strideY_, stride_, outputH_, outputW_, confPaddingY_,
|
|
confPadding_);
|
|
}
|
|
|
|
void MaxPoolProjectionLayer::backward(const UpdateCallback& callback) {
|
|
(void)callback;
|
|
|
|
if (NULL == getInputGrad(0)) {
|
|
return;
|
|
}
|
|
|
|
/* Do derivation */
|
|
MatrixPtr outGrad = getOutputGrad();
|
|
MatrixPtr inputV = getInputValue(0);
|
|
MatrixPtr outV = getOutputValue();
|
|
MatrixPtr inputGrad = getInputGrad(0);
|
|
|
|
inputGrad->maxPoolBackward(*inputV, imgSizeH_, imgSizeW_, *outGrad, *outV,
|
|
sizeX_, sizeY_, strideY_, stride_, outputH_,
|
|
outputW_, 1, 1, confPaddingY_, confPadding_);
|
|
}
|
|
|
|
void AvgPoolProjectionLayer::forward(PassType passType) {
|
|
Layer::forward(passType);
|
|
|
|
/* malloc memory for the output_ if necessary */
|
|
/* note: one sample correspond to one ROW */
|
|
MatrixPtr input = getInputValue(0);
|
|
int batchSize = input->getHeight();
|
|
int size = getSize();
|
|
resetOutput(batchSize, size);
|
|
|
|
MatrixPtr outV = getOutputValue();
|
|
|
|
outV->avgPoolForward(*input, imgSizeH_, imgSizeW_, channels_, sizeX_, sizeY_,
|
|
strideY_, stride_, outputH_, outputW_, confPaddingY_,
|
|
confPadding_);
|
|
}
|
|
|
|
void AvgPoolProjectionLayer::backward(const UpdateCallback& callback) {
|
|
(void)callback;
|
|
|
|
if (NULL == getInputGrad(0)) {
|
|
return;
|
|
}
|
|
/* Do derivation */
|
|
MatrixPtr outputGrad = getOutputGrad();
|
|
MatrixPtr inputGrad = getInputGrad(0);
|
|
inputGrad->avgPoolBackward(*outputGrad, imgSizeH_, imgSizeW_, sizeX_, sizeY_,
|
|
strideY_, stride_, outputH_, outputW_, 1, 1,
|
|
confPaddingY_, confPadding_);
|
|
}
|
|
} // namespace paddle
|