|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
you may not use this file except in compliance with the License.
|
|
|
Indicesou may obtain a copy of the License at
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
See the License for the specific language governing permissions and
|
|
|
limitations under the License. */
|
|
|
|
|
|
#include "paddle/fluid/operators/detection_output_op.h"
|
|
|
namespace paddle {
|
|
|
namespace operators {
|
|
|
|
|
|
class DetectionOutputOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
public:
|
|
|
DetectionOutputOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
|
AddInput("Loc",
|
|
|
"(Tensor) The input tensor of detection_output operator."
|
|
|
"The input predict locations"
|
|
|
"The format of input tensor is kNCHW. Where K is priorbox point "
|
|
|
"numbers,"
|
|
|
"N is How many boxes are there on each point, "
|
|
|
"C is 4, H and W both are 1.");
|
|
|
AddInput("Conf",
|
|
|
"(Tensor) The input tensor of detection_output operator."
|
|
|
"The input priorbox confidence."
|
|
|
"The format of input tensor is kNCHW. Where K is priorbox point "
|
|
|
"numbers,"
|
|
|
"N is How many boxes are there on each point, "
|
|
|
"C is the number of classes, H and W both are 1.");
|
|
|
AddInput("PriorBox",
|
|
|
"(Tensor) The input tensor of detection_output operator."
|
|
|
"The format of input tensor is the position and variance "
|
|
|
"of the boxes");
|
|
|
AddOutput("Out",
|
|
|
"(Tensor) The output tensor of detection_output operator.");
|
|
|
AddAttr<int>("background_label_id", "(int), The background class index.");
|
|
|
AddAttr<int>("num_classes", "(int), The number of the classification.");
|
|
|
AddAttr<float>("nms_threshold",
|
|
|
"(float), The Non-maximum suppression threshold.");
|
|
|
AddAttr<float>("confidence_threshold",
|
|
|
"(float), The classification confidence threshold.");
|
|
|
AddAttr<int>("top_k", "(int), The bbox number kept of the layer’s output.");
|
|
|
AddAttr<int>("nms_top_k",
|
|
|
"(int), The bbox number kept of the NMS’s output.");
|
|
|
AddComment(R"DOC(
|
|
|
detection output for SSD(single shot multibox detector)
|
|
|
Apply the NMS to the output of network and compute the predict
|
|
|
bounding box location. The output’s shape of this layer could
|
|
|
be zero if there is no valid bounding box.
|
|
|
)DOC");
|
|
|
}
|
|
|
};
|
|
|
|
|
|
class DetectionOutputOp : public framework::OperatorWithKernel {
|
|
|
public:
|
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
|
PADDLE_ENFORCE(ctx->HasInput("Loc"),
|
|
|
"Input(X) of DetectionOutputOp"
|
|
|
"should not be null.");
|
|
|
PADDLE_ENFORCE(ctx->HasInput("Conf"),
|
|
|
"Input(X) of DetectionOutputOp"
|
|
|
"should not be null.");
|
|
|
PADDLE_ENFORCE(ctx->HasInput("PriorBox"),
|
|
|
"Input(X) of DetectionOutputOp"
|
|
|
"should not be null.");
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
|
"Output(Out) of DetectionOutputOp should not be null.");
|
|
|
std::vector<int64_t> output_shape({1, 7});
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
|
|
}
|
|
|
};
|
|
|
} // namespace operators
|
|
|
} // namespace paddle
|
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
REGISTER_OP_WITHOUT_GRADIENT(detection_output, ops::DetectionOutputOp,
|
|
|
ops::DetectionOutputOpMaker);
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
|
detection_output,
|
|
|
ops::DetectionOutputKernel<paddle::platform::CPUDeviceContext, float>,
|
|
|
ops::DetectionOutputKernel<paddle::platform::CPUDeviceContext, double>);
|