You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/api/test/testGradientMachine.py

117 lines
4.3 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from py_paddle import swig_paddle
import paddle.proto.ParameterConfig_pb2
import util
import unittest
import numpy
class TestGradientMachine(unittest.TestCase):
def test_create_gradient_machine(self):
conf_file_path = "./testTrainConfig.py"
trainer_config = swig_paddle.TrainerConfig.createFromTrainerConfigFile(
conf_file_path)
self.assertIsNotNone(trainer_config)
opt_config = trainer_config.getOptimizationConfig()
model_config = trainer_config.getModelConfig()
self.assertIsNotNone(model_config)
machine = swig_paddle.GradientMachine.createByModelConfig(
model_config, swig_paddle.CREATE_MODE_NORMAL,
swig_paddle.ParameterOptimizer.create(opt_config).getParameterTypes(
))
self.assertIsNotNone(machine)
ipt, _ = util.loadMNISTTrainData()
output = swig_paddle.Arguments.createArguments(0)
optimizers = {}
# Initial Machine Parameter all to 0.1
for param in machine.getParameters():
assert isinstance(param, swig_paddle.Parameter)
val = param.getBuf(swig_paddle.PARAMETER_VALUE)
assert isinstance(val, swig_paddle.Vector)
arr = numpy.full((len(val), ), 0.1, dtype="float32")
val.copyFromNumpyArray(arr)
self.assertTrue(param.save(param.getName()))
param_config = param.getConfig().toProto()
assert isinstance(param_config,
paddle.proto.ParameterConfig_pb2.ParameterConfig)
opt = swig_paddle.ParameterOptimizer.create(opt_config)
optimizers[param.getID()] = opt
num_rows = param_config.dims[1]
opt.init(num_rows, param.getConfig())
for k in optimizers:
opt = optimizers[k]
opt.startPass()
batch_size = ipt.getSlotValue(0).getHeight()
for k in optimizers:
opt = optimizers[k]
opt.startBatch(batch_size)
machine.forward(ipt, output, swig_paddle.PASS_TRAIN)
self.assertEqual(1, output.getSlotNum())
self.isCalled = False
def backward_callback(param_):
self.isCalled = isinstance(param_, swig_paddle.Parameter)
assert isinstance(param_, swig_paddle.Parameter)
vec = param_.getBuf(swig_paddle.PARAMETER_VALUE)
assert isinstance(vec, swig_paddle.Vector)
vec = vec.copyToNumpyArray()
for val_ in vec:
self.assertTrue(
util.doubleEqual(val_, 0.1)) # Assert All Value is 0.1
vecs = list(param_.getBufs())
opt_ = optimizers[param_.getID()]
opt_.update(vecs, param_.getConfig())
machine.backward(backward_callback)
for k in optimizers:
opt = optimizers[k]
opt.finishBatch()
for k in optimizers:
opt = optimizers[k]
opt.finishPass()
self.assertTrue(self.isCalled)
for param in machine.getParameters():
self.assertTrue(param.load(param.getName()))
def test_train_one_pass(self):
conf_file_path = './testTrainConfig.py'
trainer_config = swig_paddle.TrainerConfig.createFromTrainerConfigFile(
conf_file_path)
model_config = trainer_config.getModelConfig()
machine = swig_paddle.GradientMachine.createByModelConfig(model_config)
at_end = False
output = swig_paddle.Arguments.createArguments(0)
if not at_end:
input_, at_end = util.loadMNISTTrainData(1000)
machine.forwardBackward(input_, output, swig_paddle.PASS_TRAIN)
if __name__ == '__main__':
swig_paddle.initPaddle('--use_gpu=0')
unittest.main()