You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
4.8 KiB
121 lines
4.8 KiB
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from py_paddle import swig_paddle
|
|
import numpy as np
|
|
import unittest
|
|
|
|
|
|
class TestMatrix(unittest.TestCase):
|
|
def test_createZero_get_set(self):
|
|
m = swig_paddle.Matrix.createZero(32, 24)
|
|
self.assertEqual(m.getWidth(), 24)
|
|
self.assertEqual(m.getHeight(), 32)
|
|
for x in xrange(24):
|
|
for y in xrange(32):
|
|
self.assertEqual(0.0, m.get(x, y))
|
|
with self.assertRaises(swig_paddle.RangeError):
|
|
m.get(51, 47)
|
|
m.set(3, 3, 3.0)
|
|
self.assertEqual(m.get(3, 3), 3.0)
|
|
|
|
def test_sparse(self):
|
|
m = swig_paddle.Matrix.createSparse(3, 3, 6, True, False, False)
|
|
self.assertIsNotNone(m)
|
|
self.assertTrue(m.isSparse())
|
|
self.assertEqual(m.getSparseValueType(), swig_paddle.SPARSE_NON_VALUE)
|
|
self.assertEqual(m.getSparseFormat(), swig_paddle.SPARSE_CSR)
|
|
m.sparseCopyFrom([0, 2, 3, 3], [0, 1, 2], [])
|
|
self.assertEqual(m.getSparseRowCols(0), [0, 1])
|
|
self.assertEqual(m.getSparseRowCols(1), [2])
|
|
self.assertEqual(m.getSparseRowCols(2), [])
|
|
|
|
def test_sparse_value(self):
|
|
m = swig_paddle.Matrix.createSparse(3, 3, 6, False, False, False)
|
|
self.assertIsNotNone(m)
|
|
m.sparseCopyFrom([0, 2, 3, 3], [0, 1, 2], [7.3, 4.2, 3.2])
|
|
|
|
def assertKVArraySame(actual, expect):
|
|
self.assertEqual(len(actual), len(expect))
|
|
for i in xrange(len(actual)):
|
|
a = actual[i]
|
|
e = expect[i]
|
|
self.assertIsInstance(a, tuple)
|
|
self.assertIsInstance(e, tuple)
|
|
self.assertEqual(len(a), 2)
|
|
self.assertEqual(len(e), 2)
|
|
self.assertEqual(a[0], e[0])
|
|
self.assertTrue(abs(a[1] - e[1]) < 1e-5)
|
|
|
|
first_row = m.getSparseRowColsVal(0)
|
|
assertKVArraySame(first_row, [(0, 7.3), (1, 4.2)])
|
|
|
|
def test_createDenseMat(self):
|
|
m = swig_paddle.Matrix.createDense([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], 2, 3)
|
|
self.assertIsNotNone(m)
|
|
self.assertTrue(abs(m.get(1, 1) - 0.5) < 1e-5)
|
|
|
|
def test_numpyCpu(self):
|
|
numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32")
|
|
m = swig_paddle.Matrix.createCpuDenseFromNumpy(numpy_mat, False)
|
|
self.assertEqual((int(m.getHeight()), int(m.getWidth())),
|
|
numpy_mat.shape)
|
|
|
|
# the numpy matrix and paddle matrix shared the same memory.
|
|
numpy_mat[0, 1] = 342.23
|
|
|
|
for h in xrange(m.getHeight()):
|
|
for w in xrange(m.getWidth()):
|
|
self.assertEqual(m.get(h, w), numpy_mat[h, w])
|
|
|
|
mat2 = m.toNumpyMatInplace()
|
|
mat2[1, 1] = 32.2
|
|
self.assertTrue(np.array_equal(mat2, numpy_mat))
|
|
|
|
def test_numpyGpu(self):
|
|
if swig_paddle.isGpuVersion():
|
|
numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype='float32')
|
|
gpu_m = swig_paddle.Matrix.createGpuDenseFromNumpy(numpy_mat)
|
|
assert isinstance(gpu_m, swig_paddle.Matrix)
|
|
self.assertEqual((int(gpu_m.getHeight()), int(gpu_m.getWidth())),
|
|
numpy_mat.shape)
|
|
self.assertTrue(gpu_m.isGpu())
|
|
numpy_mat = gpu_m.copyToNumpyMat()
|
|
numpy_mat[0, 1] = 3.23
|
|
for a, e in zip(gpu_m.getData(), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]):
|
|
self.assertAlmostEqual(a, e)
|
|
|
|
gpu_m.copyFromNumpyMat(numpy_mat)
|
|
|
|
for a, e in zip(gpu_m.getData(), [1.0, 3.23, 3.0, 4.0, 5.0, 6.0]):
|
|
self.assertAlmostEqual(a, e)
|
|
|
|
def test_numpy(self):
|
|
numpy_mat = np.matrix([[1, 2], [3, 4], [5, 6]], dtype="float32")
|
|
m = swig_paddle.Matrix.createDenseFromNumpy(numpy_mat)
|
|
self.assertEqual((int(m.getHeight()), int(m.getWidth())),
|
|
numpy_mat.shape)
|
|
self.assertEqual(m.isGpu(), swig_paddle.isUsingGpu())
|
|
for a, e in zip(m.getData(), [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]):
|
|
self.assertAlmostEqual(a, e)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
swig_paddle.initPaddle("--use_gpu=0")
|
|
suite = unittest.TestLoader().loadTestsFromTestCase(TestMatrix)
|
|
unittest.TextTestRunner().run(suite)
|
|
if swig_paddle.isGpuVersion():
|
|
swig_paddle.setUseGpu(True)
|
|
unittest.main()
|