You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
93 lines
3.5 KiB
93 lines
3.5 KiB
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/operators/softmax_op.h"
|
|
|
|
namespace paddle {
|
|
namespace operators {
|
|
|
|
class SoftmaxOp : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
"Input(X) of SoftmaxOp should not be null.");
|
|
PADDLE_ENFORCE(ctx->HasOutput("Y"),
|
|
"Output(Y) of SoftmaxOp should not be null.");
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
PADDLE_ENFORCE(x_dims.size() == 2UL,
|
|
"The input of softmax op must be a matrix.");
|
|
ctx->SetOutputDim("Y", x_dims);
|
|
}
|
|
};
|
|
|
|
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
public:
|
|
SoftmaxOpMaker(framework::OpProto* proto,
|
|
framework::OpAttrChecker* op_checker)
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
AddInput("X",
|
|
"The input tensor of softmax. "
|
|
"2-D with shape [batch_size, input_feature_dimensions].");
|
|
AddOutput("Y", "The normalized values with the same shape as X.");
|
|
AddComment(R"DOC(
|
|
The input of softmax operator is a 2-D tensor with shape N x K (N is the
|
|
batch_size, K is the dimension of input feature). The output tensor has the
|
|
same shape as the input tensor.
|
|
|
|
For each row of the input tensor, the softmax operator squashes the
|
|
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
|
|
values in the range [0, 1] that add up to 1. Specifically, it computes the
|
|
exponential of the given dimension and the sum of exponential values of all
|
|
the other dimensions in the K-dimensional vector input. Then the ratio of the
|
|
exponential of the given dimension and the sum of exponential values of all
|
|
the other dimensions is the output of the softmax operator.
|
|
|
|
For each row `i` and each column `j` in input X, we have:
|
|
Y[i, j] = exp(X[i, j]) / sum_j(exp(X[i, j]))
|
|
|
|
)DOC");
|
|
}
|
|
};
|
|
|
|
class SoftmaxOpGrad : public framework::OperatorWithKernel {
|
|
public:
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should be not null.");
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
|
|
"Input(Y@GRAD) should be not null.");
|
|
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Y"),
|
|
ctx->GetInputDim(framework::GradVarName("Y")),
|
|
"Input(Y) and its gradients should have a same shape.");
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
}
|
|
};
|
|
|
|
} // namespace operators
|
|
} // namespace paddle
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad,
|
|
ops::SoftmaxOpGrad);
|
|
REGISTER_OP_CPU_KERNEL(softmax,
|
|
ops::SoftmaxKernel<paddle::platform::CPUPlace, float>);
|
|
REGISTER_OP_CPU_KERNEL(
|
|
softmax_grad, ops::SoftmaxGradKernel<paddle::platform::CPUPlace, float>);
|