You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
250 lines
9.0 KiB
250 lines
9.0 KiB
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "MKLDNNActivation.h"
|
|
#include "mkldnn.hpp"
|
|
#include "paddle/utils/ClassRegistrar.h"
|
|
|
|
namespace paddle {
|
|
|
|
static ClassRegistrar<ActivationFunction> gMKLDNNActivationRegistrar;
|
|
/**
|
|
* @def MKLDNN_ACTIVATION_CLASS_NAME
|
|
* @note MKLDNN_ACTIVATION_CLASS_NAME(relu) relu_;
|
|
* means mkldnn_reluActivation relu_;
|
|
*/
|
|
#define MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) mkldnn_##ACT_TYPE##Activation
|
|
|
|
/**
|
|
* @def BEGIN_MKLDNN_ACTIVATION
|
|
*/
|
|
#define BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
|
|
class MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE) : public BASE_CLASS {
|
|
/**
|
|
* @def END_MKLDNN_ACTIVATION
|
|
*/
|
|
#define END_MKLDNN_ACTIVATION(ACT_TYPE) \
|
|
private: \
|
|
static const std::string name; \
|
|
\
|
|
public: \
|
|
const std::string& getName() const { return name; } \
|
|
} \
|
|
; \
|
|
const std::string MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::name = \
|
|
"mkldnn_" #ACT_TYPE; \
|
|
static InitFunction __reg_activation__mkldnn_##ACT_TYPE([] { \
|
|
gMKLDNNActivationRegistrar \
|
|
.registerClass<MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)>( \
|
|
"mkldnn_" #ACT_TYPE); \
|
|
});
|
|
|
|
/**
|
|
* @def DEFINE_MKLDNN_ACTIVATION
|
|
*/
|
|
#define DEFINE_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
|
|
BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
|
|
END_MKLDNN_ACTIVATION(ACT_TYPE)
|
|
|
|
/**
|
|
* @def DEFINE_MKLDNN_ELTWISE_ACTIVATION
|
|
*/
|
|
#define DEFINE_MKLDNN_ELTWISE_ACTIVATION( \
|
|
ACT_TYPE, BASE_CLASS, ALPHA, BWD_ALPHA) \
|
|
BEGIN_MKLDNN_ACTIVATION(ACT_TYPE, BASE_CLASS) \
|
|
private: \
|
|
static const float alpha; \
|
|
static const float bwdAlpha; \
|
|
\
|
|
public: \
|
|
float getAlpha() const { return alpha; } \
|
|
float getBwdAlpha() const { return bwdAlpha; } \
|
|
END_MKLDNN_ACTIVATION(ACT_TYPE) \
|
|
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::alpha = ALPHA; \
|
|
const float MKLDNN_ACTIVATION_CLASS_NAME(ACT_TYPE)::bwdAlpha = BWD_ALPHA;
|
|
|
|
/**
|
|
* @brief MKLDNN Relu Activation.
|
|
* Actually mkldnn_relu is Leaky Relu.
|
|
* f(x) = x (x >= 0)
|
|
* f(x) = negative_slope * x (x < 0)
|
|
* @note the negative_slope should be -0.f in forward
|
|
*/
|
|
DEFINE_MKLDNN_ELTWISE_ACTIVATION(relu, MKLDNNEltwiseActivation, -0.f, 0.f)
|
|
|
|
/**
|
|
* @brief MKLDNN Tanh Activation.
|
|
*/
|
|
DEFINE_MKLDNN_ELTWISE_ACTIVATION(tanh, MKLDNNEltwiseActivation, 0.f, 0.f)
|
|
|
|
/**
|
|
* @brief MKLDNN ELU(Exponential Linear Unit) Activation.
|
|
* f(x) = x (x >= 0)
|
|
* f(x) = negative_slope * (exp(x) - 1) (x < 0)
|
|
*/
|
|
DEFINE_MKLDNN_ELTWISE_ACTIVATION(elu, MKLDNNEltwiseActivation, 0.f, 0.f)
|
|
|
|
mkldnn::algorithm MKLDNNEltwiseActivation::getAlgo(std::string type) const {
|
|
const std::map<std::string, mkldnn::algorithm> algoMap = {
|
|
{"relu", algorithm::eltwise_relu},
|
|
{"tanh", algorithm::eltwise_tanh},
|
|
{"elu", algorithm::eltwise_elu}};
|
|
type.erase(0, 7); // remove mkldnn_
|
|
algorithm algo = (algorithm)0;
|
|
mapGet(type, algoMap, &algo);
|
|
return algo;
|
|
}
|
|
|
|
void MKLDNNEltwiseActivation::resetFwd(Argument& act) {
|
|
if (cnt_ == act.value->getElementCnt()) {
|
|
return;
|
|
}
|
|
MKLDNNActivation::resetFwd(act);
|
|
// note: alpha represents the NegativeSlope when used in relu.
|
|
float alpha = getAlpha();
|
|
float beta = getBeta();
|
|
algorithm algo = getAlgo(this->getName());
|
|
auto fwdDesc = eltwise_fwd::desc(mkldnn::prop_kind::forward_training,
|
|
algo,
|
|
val_->getMemoryDesc(),
|
|
alpha,
|
|
beta);
|
|
fwdPD_.reset(new eltwise_fwd::primitive_desc(fwdDesc, *engine_));
|
|
// use inplace for forward but save input value before submit
|
|
inVal_ = val_;
|
|
copyInVal_ = nullptr;
|
|
if (act.grad && algo == algorithm::eltwise_tanh) {
|
|
// tanh need save src input for backward
|
|
inVal_ = MKLDNNMatrix::create(val_->getPrimitiveDesc());
|
|
copyInVal_ = std::make_shared<mkldnn::reorder>(*val_, *inVal_);
|
|
CHECK(copyInVal_) << "should not be emptry";
|
|
pipelineFwd_.push_back(*copyInVal_);
|
|
}
|
|
fwd_.reset(new eltwise_fwd(*fwdPD_, *val_, *val_));
|
|
pipelineFwd_.push_back(*fwd_);
|
|
needResetBwd_ = true;
|
|
}
|
|
|
|
void MKLDNNEltwiseActivation::resetBwd(Argument& act) {
|
|
if (!needResetBwd_) {
|
|
return;
|
|
}
|
|
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
|
|
needResetBwd_ = false;
|
|
algorithm algo = getAlgo(this->getName());
|
|
float alpha = getBwdAlpha();
|
|
float beta = getBeta();
|
|
grad_ = MKLDNNMatrix::create(val_->getPrimitiveDesc(), act.grad);
|
|
auto eng = CPUEngine::Instance().getEngine();
|
|
auto bwdDesc = eltwise_bwd::desc(
|
|
algo, grad_->getMemoryDesc(), val_->getMemoryDesc(), alpha, beta);
|
|
auto bwdPD = eltwise_bwd::primitive_desc(bwdDesc, eng, *fwdPD_);
|
|
CHECK(inVal_);
|
|
bwd_.reset(new eltwise_bwd(bwdPD, *inVal_, *grad_, *grad_));
|
|
pipelineBwd_.clear();
|
|
pipelineBwd_.push_back(*bwd_);
|
|
}
|
|
|
|
/**
|
|
* @brief MKLDNN Softmax Activation
|
|
*/
|
|
DEFINE_MKLDNN_ACTIVATION(softmax, MKLDNNSoftmaxActivation)
|
|
|
|
void MKLDNNSoftmaxActivation::resetFwd(Argument& act) {
|
|
if (cnt_ == act.value->getElementCnt()) {
|
|
return;
|
|
}
|
|
MKLDNNActivation::resetFwd(act);
|
|
int axis = 1;
|
|
auto fwdDesc = softmax_fwd::desc(
|
|
mkldnn::prop_kind::forward_scoring, val_->getMemoryDesc(), axis);
|
|
auto fwdPD = softmax_fwd::primitive_desc(fwdDesc, *engine_);
|
|
fwd_.reset(new softmax_fwd(fwdPD, *val_, *val_));
|
|
pipelineFwd_.push_back(*fwd_);
|
|
}
|
|
|
|
Error __must_check MKLDNNSoftmaxActivation::forward(Argument& act) {
|
|
resetFwd(act);
|
|
stream_->submit(pipelineFwd_);
|
|
real* v = act.value->getData();
|
|
real threshold = exp(-64);
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < act.value->getElementCnt(); ++i) {
|
|
v[i] = v[i] < threshold ? threshold : v[i];
|
|
}
|
|
return Error();
|
|
}
|
|
|
|
Error __must_check MKLDNNSoftmaxActivation::backward(Argument& act) {
|
|
MatrixPtr outputV = act.value;
|
|
MatrixPtr outputG = act.grad;
|
|
Matrix::resizeOrCreate(sftMaxDot_,
|
|
outputG->getHeight(),
|
|
outputG->getWidth(),
|
|
/* trans */ false,
|
|
/* useGpu */ false);
|
|
Matrix::resizeOrCreate(sftMaxSum_,
|
|
outputG->getHeight(),
|
|
1,
|
|
/* trans */ false,
|
|
/* useGpu */ false);
|
|
sftMaxDot_->dotMul(*outputG, *outputV);
|
|
sftMaxSum_->colMerge(*sftMaxDot_);
|
|
act.grad->softmaxDerivative(*act.value, *sftMaxSum_);
|
|
return Error();
|
|
}
|
|
|
|
ActivationFunction* MKLDNNActivation::create(const std::string& type) {
|
|
return gMKLDNNActivationRegistrar.createByType(type);
|
|
}
|
|
|
|
std::vector<std::string> MKLDNNActivation::getAllRegisteredTypes() {
|
|
std::vector<std::string> types;
|
|
gMKLDNNActivationRegistrar.forEachType(
|
|
[&](const std::string& type) { types.push_back(type); });
|
|
return types;
|
|
}
|
|
|
|
void MKLDNNActivation::resetFwd(Argument& act) {
|
|
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
|
|
cnt_ = act.value->getElementCnt();
|
|
pipelineFwd_.clear();
|
|
stream_.reset(new MKLDNNStream());
|
|
engine_.reset(new mkldnn::engine(mkldnn::engine::cpu, 0));
|
|
val_ = std::dynamic_pointer_cast<MKLDNNMatrix>(act.value);
|
|
if (val_ == nullptr) {
|
|
int bs = act.getBatchSize();
|
|
int ih = act.getFrameHeight() > 0 ? act.getFrameHeight() : 1;
|
|
int iw = act.getFrameWidth() > 0 ? act.getFrameWidth() : 1;
|
|
int ic = cnt_ / bs / ih / iw;
|
|
CHECK_EQ(cnt_, (size_t)bs * ic * ih * iw);
|
|
val_ = MKLDNNMatrix::create(
|
|
{bs, ic, ih, iw}, mkldnn::memory::format::nchw, *engine_, act.value);
|
|
CHECK(val_);
|
|
val_->downSpatial();
|
|
}
|
|
}
|
|
|
|
Error __must_check MKLDNNActivation::forward(Argument& act) {
|
|
resetFwd(act);
|
|
stream_->submit(pipelineFwd_);
|
|
return Error();
|
|
}
|
|
Error __must_check MKLDNNActivation::backward(Argument& act) {
|
|
resetBwd(act);
|
|
stream_->submit(pipelineBwd_);
|
|
return Error();
|
|
}
|
|
} // namespace paddle
|