You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/trainer_config_helpers/tests/layers_test_config.py

87 lines
2.3 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
num_classes = 5
x = data_layer(name="input1", size=3)
y = data_layer(name="input2", size=5)
z = out_prod_layer(input1=x, input2=y)
x1 = fc_layer(input=x, size=5)
y1 = fc_layer(input=y, size=5)
z1 = mixed_layer(
act=LinearActivation(),
input=[
conv_operator(
img=x1,
filter=y1,
filter_size=1,
num_filters=5,
num_channels=5,
stride=1)
])
assert z1.size > 0
y2 = fc_layer(input=y, size=15)
z2 = rotate_layer(input=y2, height=5, width=3)
cos1 = cos_sim(a=x1, b=y1)
cos3 = cos_sim(a=x1, b=y2, size=3)
linear_comb = linear_comb_layer(weights=x1, vectors=y2, size=3)
out = fc_layer(
input=[cos1, cos3, linear_comb, z, z1, z2],
size=num_classes,
act=SoftmaxActivation())
print_layer(input=[out])
outputs(classification_cost(out, data_layer(name="label", size=num_classes)))
dotmul = mixed_layer(
input=[dotmul_operator(
a=x1, b=x1), dotmul_projection(input=y1)])
proj_with_attr_init = mixed_layer(
input=full_matrix_projection(
input=y1,
param_attr=ParamAttr(
learning_rate=0, initial_mean=0, initial_std=0)),
bias_attr=ParamAttr(
initial_mean=0, initial_std=0, learning_rate=0),
act=LinearActivation(),
size=5,
name='proj_with_attr_init')
# for ctc
tmp = fc_layer(
input=[x1, dotmul, proj_with_attr_init],
size=num_classes + 1,
act=SoftmaxActivation())
ctc = ctc_layer(input=tmp, label=y, size=num_classes + 1)
ctc_eval = ctc_error_evaluator(input=tmp, label=y)
settings(
batch_size=10,
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25)