You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/__init__.py

157 lines
4.8 KiB

# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import optimizer
import layer
import activation
import parameters
import trainer
import event
import data_type
import topology
import networks
import evaluator
from . import dataset
from . import reader
from . import plot
import attr
import op
import pooling
import inference
import networks
import minibatch
import plot
import image
import paddle.trainer.config_parser as cp
__all__ = [
'default_startup_program',
'default_main_program',
'optimizer',
'layer',
'activation',
'parameters',
'init',
'trainer',
'event',
'data_type',
'attr',
'pooling',
'dataset',
'reader',
'topology',
'networks',
'infer',
'plot',
'evaluator',
'image',
'master',
]
cp.begin_parse()
def set_env_vars(trainer_count):
'''Auto set CPU environment if have not set before.
For MKL:
export KMP_AFFINITY, OMP_DYNAMIC according to the Hyper Threading status.
export OMP_NUM_THREADS, MKL_NUM_THREADS according to trainer_count.
For OpenBLAS:
export OPENBLAS_NUM_THREADS, OPENBLAS_MAIN_FREE according to trainer_count.
'''
import platform, paddle
if not platform.system() in ['Linux', 'Darwin']:
return
def set_env(key, value):
'''If the key has not been set in the environment, set it with value.'''
assert isinstance(key, str)
assert isinstance(value, str)
envset = os.environ.get(key)
if envset is None:
os.environ[key] = value
def num_physical_cores():
'''Get the number of physical cores'''
if platform.system() == "Linux":
num_sockets = int(
os.popen("grep 'physical id' /proc/cpuinfo | sort -u | wc -l")
.read())
num_cores_per_socket = int(
os.popen("grep 'core id' /proc/cpuinfo | sort -u | wc -l")
.read())
return num_sockets * num_cores_per_socket
else:
cmds = {"Darwin": "sysctl -n hw.physicalcpu"}
return int(os.popen(cmds.get(platform.system(), "expr 1")).read())
def num_logical_processors():
'''Get the number of logical processors'''
cmds = {
"Linux": "grep \"processor\" /proc/cpuinfo|sort -u|wc -l",
"Darwin": "sysctl -n hw.logicalcpu"
}
return int(os.popen(cmds.get(platform.system(), "expr 1")).read())
num_cores = num_physical_cores()
num_processors = num_logical_processors()
if paddle.version.mkl() == 'ON':
if num_processors > num_cores: # Hyper Threading is enabled
set_env("OMP_DYNAMIC", "true")
set_env("KMP_AFFINITY", "granularity=fine,compact,1,0")
else:
set_env("OMP_DYNAMIC", "false")
set_env("KMP_AFFINITY", "granularity=fine,compact,0,0")
threads = num_processors / trainer_count
threads = '1' if threads < 1 else str(threads)
if paddle.version.mkl() == 'ON':
set_env("OMP_NUM_THREADS", threads)
set_env("MKL_NUM_THREADS", threads)
else:
set_env("OPENBLAS_NUM_THREADS", threads)
if threads > 1:
set_env("OPENBLAS_MAIN_FREE", '1')
def init(**kwargs):
import py_paddle.swig_paddle as api
args = []
args_dict = {}
# NOTE: append arguments if they are in ENV
for ek, ev in os.environ.iteritems():
if ek.startswith("PADDLE_INIT_"):
args_dict[ek.replace("PADDLE_INIT_", "").lower()] = str(ev)
args_dict.update(kwargs)
# NOTE: overwrite arguments from ENV if it is in kwargs
for key in args_dict.keys():
args.append('--%s=%s' % (key, str(args_dict[key])))
set_env_vars(kwargs.get('trainer_count', 1))
if 'use_gpu' in kwargs:
cp.g_command_config_args['use_gpu'] = kwargs['use_gpu']
if 'use_mkldnn' in kwargs:
cp.g_command_config_args['use_mkldnn'] = kwargs['use_mkldnn']
if 'use_mkl_packed' in kwargs:
cp.g_command_config_args['use_mkl_packed'] = kwargs['use_mkl_packed']
assert 'parallel_nn' not in kwargs, ("currently 'parallel_nn' is not "
"supported in v2 APIs.")
api.initPaddle(*args)
infer = inference.infer
batch = minibatch.batch