You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/fluid/layer_helper.py

217 lines
7.8 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import copy
import itertools
from framework import Variable, Parameter, default_main_program, default_startup_program, \
unique_name, dtype_is_floating
from paddle.v2.fluid.initializer import Constant, Xavier
from param_attr import ParamAttr
class LayerHelper(object):
def __init__(self, layer_type, **kwargs):
self.kwargs = kwargs
self.layer_type = layer_type
name = self.kwargs.get('name', None)
if name is None:
self.kwargs['name'] = unique_name(self.layer_type)
@property
def name(self):
return self.kwargs['name']
@property
def main_program(self):
return default_main_program()
@property
def startup_program(self):
return default_startup_program()
def append_op(self, *args, **kwargs):
return self.main_program.current_block().append_op(*args, **kwargs)
def multiple_input(self, input_param_name='input'):
inputs = self.kwargs.get(input_param_name, [])
type_error = TypeError(
"Input of {0} layer should be Variable or sequence of Variable".
format(self.layer_type))
if isinstance(inputs, Variable):
inputs = [inputs]
elif not isinstance(inputs, list) and not isinstance(inputs, tuple):
raise type_error
else:
for each in inputs:
if not isinstance(each, Variable):
raise type_error
return inputs
def input(self, input_param_name='input'):
inputs = self.multiple_input(input_param_name)
if len(inputs) != 1:
raise "{0} layer only takes one input".format(self.layer_type)
return inputs[0]
@property
def param_attr(self):
return ParamAttr.to_attr(self.kwargs.get('param_attr', None))
@property
def bias_attr(self):
return ParamAttr.to_attr(self.kwargs.get('bias_attr', None))
def multiple_param_attr(self, length):
param_attr = self.param_attr
if isinstance(param_attr, ParamAttr):
param_attr = [param_attr]
if len(param_attr) != 1 and len(param_attr) != length:
raise ValueError("parameter number mismatch")
elif len(param_attr) == 1 and length != 1:
tmp = [None] * length
for i in xrange(length):
tmp[i] = copy.deepcopy(param_attr[0])
param_attr = tmp
return param_attr
def iter_inputs_and_params(self, input_param_name='input'):
inputs = self.multiple_input(input_param_name)
param_attrs = self.multiple_param_attr(len(inputs))
for ipt, param_attr in itertools.izip(inputs, param_attrs):
yield ipt, param_attr
def input_dtype(self, input_param_name='input'):
inputs = self.multiple_input(input_param_name)
dtype = None
for each in inputs:
if dtype is None:
dtype = each.dtype
elif dtype != each.dtype:
raise ValueError("Data Type mismatch")
return dtype
def create_parameter(self,
attr,
shape,
dtype,
is_bias=False,
default_initializer=None):
# Deepcopy the attr so that parameters can be shared in program
assert isinstance(attr, ParamAttr)
suffix = 'b' if is_bias else 'w'
if default_initializer is None:
if is_bias:
attr.set_default_bias_initializer()
else:
attr.set_default_param_initializer()
else:
attr.set_default_initializer(default_initializer)
if attr.name is None:
attr.name = unique_name(".".join([self.name, suffix]))
self.startup_program.global_block().create_parameter(
dtype=dtype, shape=shape, **attr.to_kwargs(with_initializer=True))
return self.main_program.global_block().create_parameter(
dtype=dtype, shape=shape, **attr.to_kwargs())
def get_parameter(self, name):
param = self.main_program.global_block().var(name)
if not isinstance(param, Parameter):
raise ValueError("no Parameter name %s found" % name)
return param
def create_tmp_variable(self, dtype, stop_gradient=False):
return self.main_program.current_block().create_var(
name=unique_name(".".join([self.name, 'tmp'])),
dtype=dtype,
persistable=False,
stop_gradient=stop_gradient)
def create_variable(self, *args, **kwargs):
return self.main_program.current_block().create_var(*args, **kwargs)
def create_global_variable(self, persistable=False, *args, **kwargs):
return self.main_program.global_block().create_var(
*args, persistable=persistable, **kwargs)
def set_variable_initializer(self, var, initializer):
assert isinstance(var, Variable)
self.startup_program.global_block().create_var(
name=var.name,
type=var.type,
dtype=var.dtype,
shape=var.shape,
persistable=True,
initializer=initializer)
def append_bias_op(self, input_var, dim_start=1, dim_end=None):
"""
Append bias operator and return its output. If the user does not set
bias_attr, append_bias_op will return input_var
:param input_var: the input variable. The len(input_var.shape) is
larger or equal than 2.
:bias_initializer: an instance of a subclass of Initializer used to
initialize the bias
:param dim_start:
:param dim_end: the shape of the bias will be
input_var.shape[dim_start:dim_end]. The bias is broadcasted to other
dimensions and added to input_var to get the output
"""
size = list(input_var.shape[dim_start:dim_end])
bias_attr = self.bias_attr
if not bias_attr:
return input_var
b = self.create_parameter(
attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True)
tmp = self.create_tmp_variable(dtype=input_var.dtype)
self.append_op(
type='elementwise_add',
inputs={'X': [input_var],
'Y': [b]},
outputs={'Out': [tmp]},
attrs={'axis': dim_start})
return tmp
def append_activation(self, input_var):
act = self.kwargs.get('act', None)
if act is None:
return input_var
if isinstance(act, basestring):
act = {'type': act}
tmp = self.create_tmp_variable(dtype=input_var.dtype)
act_type = act.pop('type')
self.append_op(
type=act_type,
inputs={"X": [input_var]},
outputs={"Out": [tmp]},
attrs=act)
return tmp
def _get_default_initializer(self, dtype):
if dtype is None or dtype_is_floating(dtype) is True:
return Xavier()
else:
# For integer and boolean types, initialize with all zeros
return Constant()
def is_instance(self, param_name, cls):
param = self.kwargs.get(param_name, None)
if not isinstance(param, cls):
raise TypeError("The input {0} parameter of method {1} must be {2}",
param_name, self.layer_type, cls.__name__)