You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
6.5 KiB
172 lines
6.5 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
#
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
#you may not use this file except in compliance with the License.
|
|
#You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
#See the License for the specific language governing permissions and
|
|
#limitations under the License.
|
|
import numpy
|
|
import collections
|
|
import topology
|
|
import minibatch
|
|
import cPickle
|
|
|
|
__all__ = ['infer', 'Inference']
|
|
|
|
|
|
class Inference(object):
|
|
"""
|
|
Inference combines neural network output and parameters together
|
|
to do inference.
|
|
|
|
.. code-block:: python
|
|
|
|
inferer = Inference(output_layer=prediction, parameters=parameters)
|
|
for data_batch in batches:
|
|
print inferer.infer(data_batch)
|
|
|
|
|
|
:param output_layer: The neural network that should be inferenced.
|
|
:type output_layer: paddle.v2.config_base.Layer or the sequence
|
|
of paddle.v2.config_base.Layer
|
|
:param parameters: The parameters dictionary.
|
|
:type parameters: paddle.v2.parameters.Parameters
|
|
"""
|
|
|
|
def __init__(self, parameters, output_layer=None, fileobj=None):
|
|
import py_paddle.swig_paddle as api
|
|
|
|
if output_layer is not None:
|
|
topo = topology.Topology(output_layer)
|
|
gm = api.GradientMachine.createFromConfigProto(
|
|
topo.proto(), api.CREATE_MODE_TESTING, [api.PARAMETER_VALUE])
|
|
self.__data_types__ = topo.data_type()
|
|
elif fileobj is not None:
|
|
tmp = cPickle.load(fileobj)
|
|
gm = api.GradientMachine.createByConfigProtoStr(
|
|
tmp['protobin'], api.CREATE_MODE_TESTING,
|
|
[api.PARAMETER_VALUE])
|
|
self.__data_types__ = tmp['data_type']
|
|
else:
|
|
raise ValueError("Either output_layer or fileobj must be set")
|
|
|
|
for param in gm.getParameters():
|
|
val = param.getBuf(api.PARAMETER_VALUE)
|
|
name = param.getName()
|
|
assert isinstance(val, api.Vector)
|
|
val.copyFromNumpyArray(parameters.get(name).flatten())
|
|
# the setValueUpdated function is called in randomize, zeroMem,
|
|
# load function in paddle/parameter/Parameter.cpp. But in the
|
|
# inference mode, the setValueUpdated is never called, it will
|
|
# cause the parameter will not be dispatched
|
|
# in MultiGradientMachine for multi-GPU. So setValueUpdated is
|
|
# called here, but it's better to call this function in one place.
|
|
param.setValueUpdated()
|
|
self.__gradient_machine__ = gm
|
|
|
|
def iter_infer(self, input, feeding=None):
|
|
from data_feeder import DataFeeder
|
|
feeder = DataFeeder(self.__data_types__, feeding)
|
|
batch_size = len(input)
|
|
|
|
def __reader_impl__():
|
|
for each_sample in input:
|
|
yield each_sample
|
|
|
|
reader = minibatch.batch(__reader_impl__, batch_size=batch_size)
|
|
|
|
self.__gradient_machine__.start()
|
|
for data_batch in reader():
|
|
yield self.__gradient_machine__.forwardTest(feeder(data_batch))
|
|
self.__gradient_machine__.finish()
|
|
|
|
def iter_infer_field(self, field, **kwargs):
|
|
if not isinstance(field, list) and not isinstance(field, tuple):
|
|
field = [field]
|
|
|
|
for result in self.iter_infer(**kwargs):
|
|
for each_result in result:
|
|
item = [each_result[each_field] for each_field in field]
|
|
yield item
|
|
|
|
def infer(self, input, field='value', flatten_result=True, **kwargs):
|
|
"""
|
|
Infer a data by model.
|
|
:param input: input data batch. Should be python iterable object.
|
|
:param field: output field.
|
|
"""
|
|
retv = None
|
|
kwargs['input'] = input
|
|
for result in self.iter_infer_field(field=field, **kwargs):
|
|
if retv is None:
|
|
retv = [[] for i in xrange(len(result))]
|
|
for i, item in enumerate(result):
|
|
retv[i].append(item)
|
|
|
|
if retv == None:
|
|
return []
|
|
|
|
if flatten_result:
|
|
retv = [numpy.concatenate(out) for out in retv]
|
|
|
|
if len(retv) == 1:
|
|
return retv[0]
|
|
else:
|
|
return retv
|
|
|
|
|
|
def infer(output_layer, parameters, input, feeding=None, field='value'):
|
|
"""
|
|
Infer a neural network by given neural network output and parameters. The
|
|
user should pass either a batch of input data or reader method.
|
|
|
|
Example usage for sinlge output_layer:
|
|
|
|
.. code-block:: python
|
|
|
|
result = paddle.infer(output_layer=prediction,
|
|
parameters=parameters,
|
|
input=SomeData)
|
|
print result
|
|
|
|
Example usage for multiple outout_layers and fields:
|
|
|
|
.. code-block:: python
|
|
|
|
result = paddle.infer(output_layer=[prediction1, prediction2],
|
|
parameters=parameters,
|
|
input=SomeData,
|
|
field=[id, value]])
|
|
print result
|
|
|
|
:param output_layer: output of the neural network that would be inferred
|
|
:type output_layer: paddle.v2.config_base.Layer or a list of
|
|
paddle.v2.config_base.Layer
|
|
:param parameters: parameters of the neural network.
|
|
:type parameters: paddle.v2.parameters.Parameters
|
|
:param input: input data batch. Should be a python iterable object, and each
|
|
element is the data batch.
|
|
:type input: collections.Iterable
|
|
:param feeding: Reader dictionary. Default could generate from input
|
|
value.
|
|
:param field: The prediction field. It should in [`value`, `id`, `prob`].
|
|
`value` and `prob` mean return the prediction probabilities,
|
|
`id` means return the prediction labels. Default is `value`.
|
|
Note that `prob` only used when output_layer is beam_search
|
|
or max_id.
|
|
:type field: str
|
|
:return: The prediction result. If there are multiple outout_layers and fields,
|
|
the return order is outout_layer1.field1, outout_layer2.field1, ...,
|
|
outout_layer1.field2, outout_layer2.field2 ...
|
|
:rtype: numpy.ndarray
|
|
"""
|
|
|
|
inferer = Inference(output_layer=output_layer, parameters=parameters)
|
|
return inferer.infer(field=field, input=input, feeding=feeding)
|